

NHP

# **TemBreak** PRO P Model Moulded Case CircuitBreaker

Exclusive Partner

SMART Electronic Trip Unit from 160A up to 630A USER MANUAL







Version 1.7.0

NHP Electrical Engineering Products





### Using this manual

#### **Safety Precautions**

#### Authorised Personnel Only

The product or system described in this documentation must be installed, operated and maintained by qualified personnel only. NHP or Terasaki accept no responsibility for the consequences of the use of this equipment by unqualified personnel.

A qualified person is one with the necessary skills and knowledge of the construction and operation of the installation of electrical equipment and has been trained to identify and avoid risks.

#### Appropriate use of NHP / Terasaki products

NHP / Terasaki products are intended to be used only for the applications described in the catalogue and technical documentation, which is dedicated to them. If products and components from other manufacturers are used, they must be recommended or approved by NHP or Terasaki. Appropriate use of NHP / Terasaki products during transport, storage, installation, assembly, commissioning, operation and maintenance is necessary to ensure safe operation and without any problems.

The permissible ambient conditions must be met. The information contained in the technical documentation must be observed.

#### Publication of responsibility

The contents of this document have been reviewed to ensure that the reliability of the information is correct at time of publication. NHP or Terasaki are not responsible for printing or damage resulting from errors. NHP or Terasaki reserve the right to make corrections and changes needed in subsequent edition.

#### Warnings and notes

This documentation contains safety instructions that you must follow for your personal safety and to prevent damage to property. Safety instructions, referring to your personal safety are reported in the literature by a safety alert symbol.

Safety warning symbols and the words below are classified according to the degree of risk.



**WARNING**: Indicates an imminently hazardous situation which, if it cannot be avoided, will result in death or serious injury.



WARNING: Indicates a potentially hazardous situation which, if it cannot be avoided, can result serious injury or death.



WARNING: Indicates a potentially hazardous situation which, if it cannot be avoided, may cause minor or moderate injury.



**Notice**: Indicates a warning of property damage and can also indicate important operating and especially useful information on the product, that it should pay particular attention to efficient and safe operation.



### Summary of Changes

This section highlights the details of changes made since the previous issue of this document.

The versioning convention used to track changes in this document follows the structure Vx.y.z where:

**x**: Major revision, where extensive changes are made which is generally incompatible with the previous version. Such changes may include new products and/or features, or removal of information which is no longer relevant or applicable to the previous version

y: Minor revision, where changes made do not change the overall scope of the previous version, but may include additional information which complements or corrects the previous version, or provides additional clarity on an existing topic.

z: Patch version, where small changes are made to correct minor errors or adjust existing text, charts, figures and/or images, and which do not add or remove information from the previous version. Example changes may include spelling corrections, image re-sizing and adjustments, updated images, etc.

| Version | Publication date | Changes                                                                                                                                                                                                                                                                                                                     | Ву     |
|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| V 1.0.0 | 19-Apr-2021      | Initial release                                                                                                                                                                                                                                                                                                             | D.NAT  |
| V 1.1.0 | 26-Apr-2021      | Product information corrections                                                                                                                                                                                                                                                                                             | D.NAT  |
| V 1.2.0 | 13-May-2021      | Clearance distance corrections                                                                                                                                                                                                                                                                                              | N.ALEX |
| V 1.2.1 | 24-May-2021      | Typo corrections to Part Number Break Down                                                                                                                                                                                                                                                                                  | N.ALEX |
| V 1.3.0 | 28-May-2021      | Label Identification section added, Temperature Rating tables aligned headings with TD-001-EN, I <sup>2</sup> t Curves updated in image quality, added references and links to,<br>TD-001-EN, TD-002-EN, TD-003-EN, & Type2_TBpro_MotorStartTables-TD-001-EN<br>Added links to TemView_PRO-UM-001-EN & TemCom_PRO-UM-001-EN | N.ALEX |
| V 1.3.1 | 10-June-2021     | Fixed typo on TPED part number and Fixed typo on P250 Let-through scale                                                                                                                                                                                                                                                     | N.ALEX |
| V 1.4.0 | 20-August-2021   | Added ampere data for SMART AUX, fixed typo on Part Number Break Down, correction to P160 Information table data, added resistance watts loss, corrected typo rewording in Navigation section, Clearance section links to Installation Manuals added                                                                        | N.ALEX |
| V 1.5.0 | 20-Jan-2022      | Changed watts loss and temperature tables to match TD-001-EN                                                                                                                                                                                                                                                                | N.ALEX |
| V 1.6.0 | 09-Feb-2022      | Added LTD equation, fixed table of contents error and headers error                                                                                                                                                                                                                                                         | N.ALEX |
| V 1.7.0 | 19-Sept-2022     | Added Data around I <sup>2</sup> t functions for STD, GF & Thermal Self-Protection, fixed heading issues, fixed thermal imaging key, OCR references changed to "Trip Unit", Added Annex G, Added information on TP2 to TBP ZSI, added Internal Accessories terminal designations to Annex G                                 | N.ALEX |

### Table of Contents

| Using this manual                          |
|--------------------------------------------|
| Safety Precautions                         |
| Summary of Changes                         |
| Table of Contents                          |
| Introduction                               |
| Who Should Use This Manual?                |
| Additional resources                       |
| Terminology and Abbreviations              |
| Product Information                        |
| Part Number Break Down                     |
| Available MCCBs in the TemBreak PRO range: |
| Label Identification                       |
| P160_SE and P250_SE Information            |
| P400_SE Information                        |
| P630_SE Information                        |
| Internal Accessories                       |
| Auxiliary & Alarm Switches                 |
| Auxiliary Contact                          |
| Alarm Contact                              |
| SMART Auxiliary AX / AL Status Indicator   |
| Shunt Trip                                 |
| Under Voltage Trips                        |
| P_SE Only MCCB Accessories                 |
| TemView <i>PRO</i> (TPED)                  |
| TemCom <i>PRO</i> (TPCM)                   |
| Connection Cables                          |
| CIP-RJ9 cable                              |
| ZSI cable                                  |
| OAC and PTA cable                          |
| Plugs & Ports                              |
| Installation                               |
| Precautions                                |
| Mounting Angles                            |
| Direction of Power Supply                  |
| Clearances                                 |
| Internal Accessory Mounting Locations      |
| P160 internal accessories combination      |
| P250 internal accessories combination      |
| P400/630 internal accessories combination  |
| Alarm, Shunt & UVT Installation            |
| Standard Alarm & Auxiliary installation    |
| Shunt & UVT installation                   |
| SMART Auxiliary Installation               |

2 3



| Protection Settings                                           | 30       |
|---------------------------------------------------------------|----------|
| Trip Curve                                                    | 30       |
| Long Time Delay Protection (LTD)                              | 31       |
| Equation                                                      | 31       |
| Adjusting Ir (Current)                                        | 32       |
| Adjusting $t_r$ (Time Delay)                                  | 33       |
| Thermal memory / Hot–Cold start mode                          | 34       |
| Short Time Delay Protection (STD)                             | 35       |
| Adjusting I <sub>sd</sub> (Current)                           | 36       |
| Adjusting $t_{sd}$ (Time Delay)                               | 38       |
| Isd Time Delay Adjustment Settings (ms)                       | 38       |
| I <sup>2</sup> t function for STD                             | 39       |
| Thermal Self-Protection                                       | 42       |
| Thermal Self-Protection I <sup>2</sup> t Equation             | 42       |
| Instantaneous Protection (INST)                               | 43       |
|                                                               | 44 44    |
| Adjusting Ii (Current)<br>Tolerances                          | 44 45    |
|                                                               | 45<br>46 |
| Ground/Earth Fault Protection (GF)<br>Adjusting Ig (Current)  | 40<br>46 |
|                                                               | 40<br>47 |
| Adjusting t <sub>g</sub> (Time Delay)                         |          |
| t <sub>g</sub> Time Delay Adjustment Range (ms)               | 47       |
| I <sup>2</sup> t function for GF                              | 47       |
| Neutral Protection (NP)                                       | 49       |
| Adjusting $I_r$ and $I_{sd}$ for Neutral Protection (Current) | 49       |
| Zone Selective Interlocking Function (ZSI)                    | 50       |
| Setting the ZSI function                                      | 51       |
| Installation consideration                                    | 51       |
| ZSI example A                                                 | 52       |
| ZSI example B                                                 | 52       |
| Zone Interlocking with TemPower 2 ACBs                        | 53       |
| Measurement and Settings                                      | 56       |
| Overview of Measurements                                      | 56       |
| Accuracy of Measurements                                      | 58       |
| Real-Time and Min./Max. Measurements                          | 59       |
| Current and Voltage Imbalances                                | 61       |
| System Phase Sequence                                         | 62       |
| Power Related Measurements                                    | 63       |
| Active, Reactive, Apparent power                              | 63       |
| Power factor (PF and cosφ)                                    | 66       |
| Total Harmonic Distortion (THD)                               | 68       |
| Current (THDI)                                                | 68       |
| Voltage (THD, THD <sub>U</sub> , THD <sub>V</sub> )           | 68       |
| Demand Values (averaged values over an interval)              | 69       |
| Demand mode                                                   | 70       |
| Energy Measurements                                           | 72       |
| Alarms                                                        | 73       |
| Alarm Types                                                   | 73       |
| Alarm Indication                                              | 73       |
| Priority Level                                                | 74       |
| System Alarms                                                 | 75       |
| PTA (Pre-Trip Alarm)                                          | 76       |
| Pre-Trip Alarm Configurable Settings                          | 77       |
| Trip Alarms                                                   | 78       |
| Last trip                                                     | 78       |
| Custom Alarms                                                 | 79       |
| Custom alarm parameters                                       | 79       |
| Positive activation                                           | 80       |
| Negative activation                                           | 80       |
| Equivalent value activation                                   | 81       |
| Time delays                                                   | 82       |
| Custom alarms list                                            | 83       |
| OAC (Optional Alarm Contact)                                  | 86       |
| Optional alarms List                                          | 86       |



## Table of Contents

| Date & Time                                             | 87  |
|---------------------------------------------------------|-----|
| History                                                 | 88  |
| Trip Alarm Log                                          | 88  |
| Custom Alarm Log                                        | 88  |
| Protection Setting Changes Log                          | 89  |
|                                                         |     |
| Write Protection                                        | 90  |
| Remote Write Authorization                              | 90  |
| Password Management                                     | 91  |
| Changing the Password                                   | 91  |
| Trip Unit Power Supply                                  | 92  |
|                                                         | 92  |
| Self-power requirements                                 |     |
| External 24V dc supply requirements                     | 92  |
| External 24V dc supply instructions – CIP adapter cable | 93  |
| Navigation                                              | 95  |
| P_SE Trip Unit Overview                                 | 95  |
| Principles of Navigation                                | 96  |
|                                                         | 96  |
| Locking / Release Button                                |     |
| Navigation Menus                                        | 98  |
| Protection Setting Menu                                 | 98  |
| Measurement Menu                                        | 99  |
| Setup Menu                                              | 100 |
| Information Menu                                        | 101 |
|                                                         |     |
| Sleep / Standby                                         | 102 |
| Commissioning                                           | 103 |
| Starting the P_SE MCCB for the First Time               | 103 |
| LTD Protection Adjustments (Ir, tr)                     | 104 |
| Navigation and Settings After the First Setup           | 106 |
| Accessing Measurements                                  | 108 |
|                                                         | 100 |
| Setting Favourites                                      |     |
| Accessing Setup Settings                                | 110 |
| Troubleshooting                                         | 112 |
| Annex A – Dimensions                                    | 114 |
| P160 Dimensions                                         | 114 |
| P250 Dimensions                                         | 115 |
|                                                         | 116 |
| P400 Dimensions                                         |     |
| P630 Dimensions                                         | 117 |
| Annex B – Trip Curves                                   | 118 |
| Annex C – I <sup>2</sup> t Let-Through Curves           | 119 |
| P160 SE                                                 | 119 |
| P250_SE                                                 | 120 |
| P400 SE                                                 | 120 |
|                                                         |     |
| P630_SE                                                 | 122 |
| Annex D – Peak Let Through Curves                       | 123 |
| P160_SE                                                 | 123 |
| P250_SE                                                 | 124 |
| P400_SE                                                 | 125 |
|                                                         |     |
| P630_SE                                                 | 126 |
| Annex E – Watts Loss                                    | 127 |
| Impedance Watts Loss                                    | 127 |
| Resistance Watts Loss                                   | 127 |
| Annex F – Rated Temperature Tables                      | 128 |
| P160 Electronic                                         | 128 |
|                                                         |     |
| P250 Electronic                                         | 128 |
| P400 Electronic                                         | 128 |
| P630 Electronic                                         | 128 |
| Annex G – Wiring Diagrams & Terminal Designations       | 129 |
| Internal Accessories                                    | 129 |
| ZSI Wiring                                              | 130 |
| •                                                       |     |
| ACBs Upstream                                           | 130 |
| MCCBs Upstream                                          | 130 |
|                                                         |     |





NHP

### Introduction

This user manual describes the TemBreak PRO Smart Energy (**P\_SE**) MCCB features and instructions for use, and provides information for commissioning and configuring.

Some additional features may require the use of additional products and accessories to achieve full utilization of that feature. Refer the respective User Manual in the TemBreak *PRO* series for additional information on the respective product.



**Notice**: Not all Smart Trip Units in the TemBreak *PRO* series are identical. This document specifically covers the P\_SE Trip Units only. Refer to the respective Smart Trip Unit User Manual (e.g. B\_SE User Manual) for information and instructions on other Smart Trip Units in the TemBreak *PRO* series.

#### Who Should Use This Manual?

This manual aims to provide users, electricians, panel builders and maintenance personnel, with the technical information required for commissioning and operation of the NHP / Terasaki TemBreak PRO P\_SE MCCB.

Users of this document must have at minimum a basic understanding of electrical circuit protection topics including (but not limited to):

- Power distribution and reticulation
- Circuit protection devices
- Fault currents
- Arc faults
- Temperature rise and thermal derating of switchgear

#### Additional resources

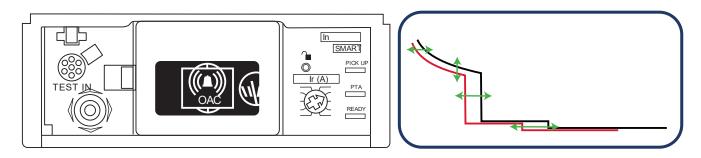
The following resources contain additional information which should be read in conjunction with this document.

| Resource                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NHP/Terasaki TemBreak PRO P_SE Installation           Instructions           P160_3_SE-IN-001-EN           P250_3_SE-IN-001-EN           P250_4_SE-IN-001-EN           P400_3_SE-IN-001-EN           P400_4_SE-IN-001-EN           P400_4_SE-IN-001-EN           P630_3_SE-IN-001-EN           P630_4_SE-IN-001-EN | Information on installing, mounting, and wiring the TemBreak <i>PRO</i> Smart Energy MCCB.                                                                        |
| NHP/Terasaki TemView <i>PRO</i> Installation Instructions<br>TemView_PRO-IN-001-EN                                                                                                                                                                                                                                 | Information on installing, mounting, and wiring the TemView PRO external display.                                                                                 |
| NHP/Terasaki TemView PRO User Manual<br>TemView PRO-UM-001-EN                                                                                                                                                                                                                                                      | Reference guide for the TemView <i>PRO</i> external display including information for installation, wiring, commissioning, configuration, and troubleshooting.    |
| NHP/Terasaki TemCom PRO Installation Instructions<br>TemCom_PRO-IN-001-EN                                                                                                                                                                                                                                          | Information on installing, mounting, and wiring the TemCom PRO communications module.                                                                             |
| NHP/Terasaki TemCom PRO User Manual<br>TemCom PRO-UM-001-EN                                                                                                                                                                                                                                                        | Reference guide for the TemCom <i>PRO</i> communication module including information for installation, wiring, commissioning, configuration, and troubleshooting. |
| Technical Data – Temperature and Watts Loss<br>TBP-TD-001-EN                                                                                                                                                                                                                                                       | Temperature and Watts Loss tables for TemBreak PRO Moulded Case Circuit Breakers.                                                                                 |
| Technical Data – Cascading and Selectivity<br><u>TBP-TD-002-EN</u>                                                                                                                                                                                                                                                 | Cascading and Selectivity tables for TemBreak PRO Moulded Case Circuit Breakers with<br>Din-T, Din-Safe, & MOD6 MCBs/RCBOs                                        |
| Technical Data – Coordination<br><u>TBP-TD-003-EN</u>                                                                                                                                                                                                                                                              | Socomec Backup Tables with TemBreak PRO Moulded Case Circuit Breakers                                                                                             |
| Technical Data – Type 2 Coordination<br><u>Type2_TBpro_MotorStartTables-TD-001-EN</u>                                                                                                                                                                                                                              | Type 2 Coordination for Premium Efficiency Motor Starters with TemBreak <i>PRO</i> Moulded Case Circuit Breakers                                                  |



### Introduction

#### Terminology and Abbreviations


| Abbreviation             | Description                                                                                                                                                                                                                | Abbreviation      | Description                                                                             |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------|--|--|
|                          | Auxiliary Communications port: Plug for Smart auxiliary /                                                                                                                                                                  |                   | Maintenance Interface Port: Plug for temporary                                          |  |  |
| ACP                      | alarm contact block                                                                                                                                                                                                        | MIP               | connection to Trip Unit testing, servicing, and                                         |  |  |
|                          |                                                                                                                                                                                                                            |                   | maintenance tools                                                                       |  |  |
| AL                       | Alarm: An auxiliary contact indicating trip status                                                                                                                                                                         | Ν                 | Neutral                                                                                 |  |  |
| ASCII                    | American Standard Code for Information Interchange                                                                                                                                                                         | NP                | Neutral Protection                                                                      |  |  |
| AX or AUX                | Auxiliary: Auxiliary contact indicating open / closed                                                                                                                                                                      | OAC               | Optional Alarm Contact: Connection connector optional<br>alarm output contact           |  |  |
| BE                       | Basic Electronic Trip Unit (dial type, LSI and LSIG)                                                                                                                                                                       | Trip Unit         | Over Current Relay                                                                      |  |  |
| CCW                      | Connected Components Workbench software                                                                                                                                                                                    | P or PTA          | Pre-trip Alarm                                                                          |  |  |
| <b>CIP</b> <sup>12</sup> | <ul> <li><sup>1</sup> Communication Interface Port: Plug for control power<br/>and data for use with the TPED remote display and<br/>TPCM communication module</li> <li><sup>2</sup> Common Industrial Protocol</li> </ul> | PDU               | Protocol Data Unit                                                                      |  |  |
| CRC                      | Cyclic Redundancy Check – error-detecting code used at the end of each Modbus message                                                                                                                                      | PELV              | Protected Extra Low Voltage (earthed system)                                            |  |  |
| dec                      | Decimal (base-10) numbering system                                                                                                                                                                                         | РТА               | Pre-Trip Alarm: is a programmable output contact to advise when a trip may be imminent. |  |  |
| DINT                     | Signed Double Integer datatype (4 bytes or 32 bits in length)                                                                                                                                                              | RTU               | Remote Terminal Unit                                                                    |  |  |
| EIPM                     | TemBreak PRO Ethernet/IP Module                                                                                                                                                                                            | S or STD          | Short Time Delay Protection                                                             |  |  |
| FF                       | Fixed Thermal and Fixed Magnetic                                                                                                                                                                                           | SE                | Smart Energy Trip Unit                                                                  |  |  |
| FM                       | Fixed Thermal and Adjustable Magnetic                                                                                                                                                                                      | SELV              | Separated Extra Low Voltage                                                             |  |  |
| G or GF                  | Ground Fault Protection                                                                                                                                                                                                    | SN                | Solid Neutral                                                                           |  |  |
| hex                      | Hexadecimal (base-16) numbering system                                                                                                                                                                                     | SSID              | Service Set Identifier (name of the Wi-Fi wireless network)                             |  |  |
| l or INST                | Instantaneous Protection                                                                                                                                                                                                   | STR               | String datatype                                                                         |  |  |
| IEC                      | International Electrotechnical Commission                                                                                                                                                                                  | TCP               | Transmission Control Protocol                                                           |  |  |
| IEEE                     | Institute of Electrical and Electronics Engineers                                                                                                                                                                          | TF                | Adjustable Thermal and Fixed Magnetic                                                   |  |  |
| lg                       | Ground Fault Protection Current                                                                                                                                                                                            | THD               | Total Harmonic Distortion                                                               |  |  |
| li                       | Instantaneous Protection Current                                                                                                                                                                                           | ТМ                | Adjustable Thermal Magnetic                                                             |  |  |
| In                       | Rated Current                                                                                                                                                                                                              | ТРСМ              | TemCom PRO Communication Module                                                         |  |  |
| IN                       | Neutral Protection Current                                                                                                                                                                                                 | TPED              | TemView PRO External Display                                                            |  |  |
| INT                      | Signed Integer datatype (2 bytes or 16 bits in length)                                                                                                                                                                     | tr                | LTD Time delay                                                                          |  |  |
| IP                       | International Protection (Ingress Protection)                                                                                                                                                                              | t <sub>sd</sub>   | STD Time delay                                                                          |  |  |
| l <sub>r</sub>           | LTD Protection Current                                                                                                                                                                                                     | t <sub>tsp</sub>  | Thermal Self-Protection Time delay                                                      |  |  |
| l <sub>sd</sub>          | STD Protection Current                                                                                                                                                                                                     | UDINT             | Unsigned Integer (2 bytes or 16-bits in length)                                         |  |  |
| l <sub>tsp</sub>         | Thermal Self-Protection Current                                                                                                                                                                                            | UINT              | Unsigned Integer (2 bytes or 16 bits in length)                                         |  |  |
| L or LTD                 | Long Time Delay Protection                                                                                                                                                                                                 | ULINT             | Unsigned Long Integer datatype (8 bytes or 64 bits in length)                           |  |  |
| LCD                      | Liquid Crystal Display (LCD)                                                                                                                                                                                               | URLs              | Uniform Resource Locator (address of an Internet website)                               |  |  |
| LED                      | Light Emitting Diode                                                                                                                                                                                                       | WORD              | 2 bytes or 16-bits of data                                                              |  |  |
| LINT                     | Signed Long Integer datatype (8 bytes or 64 bits in length)                                                                                                                                                                | ZSI               | Zone Selective Interlocking (zone selectivity)                                          |  |  |
| LSI                      | Long Time, Short Time and Instantaneous Protection                                                                                                                                                                         | θ                 | Thermal imaging value                                                                   |  |  |
| LSIG                     | Long Time, Short Time, Instantaneous and Ground Fault<br>Protection                                                                                                                                                        | θc                | Cold start mode thermal imaging value                                                   |  |  |
| MCCB                     | Moulded Case Circuit Breaker                                                                                                                                                                                               | θΗ                | Hot start mode thermal imaging value                                                    |  |  |
| microSD                  | Micro Secure Digital                                                                                                                                                                                                       | θ <sub>trip</sub> | Thermal imaging value tripping threshold                                                |  |  |

NHP





The TemBreak *PRO* P model SMART Electronic MCCB with Trip Unit type P\_SE, in addition to protecting against overloads and short circuits, offers flexibility via provide fully adjustable LSIG (long time, short time, instantaneous, ground fault) protection settings via the embedded OLED display as well as a host of other standard or optional features. This allows for improved selectivity combinations between MCCBs or other circuit breaker types, plus a wide range of energy measurement and communication functions.



#### Features

- Setting by rotary switch, joystick and embedded display.
- Signalling the Trip Unit LED status (Ready).
- Signalling PTA overload pre-warning LED (adjustable threshold)
- LED signalling overload alarm (> Ir).
- Possible adjustment of thresholds and time delays for LSIG protection.
- Possible adjustment of the protection of the neutral pole on 4-pole versions (neutral pole positioned to the right).

#### Frame Sizes

- P160
- P250
- P400
- P630

#### **Protection Functions**

- Long Time Delay
- Short Time Delay
- Instantaneous
- Ground Fault
- Neutral Protection (4 Pole only)
- Zone Interlocking

#### **Measurement Functions**

The P\_SE Trip Unit complies with the requirements of IEC 61557-12 and can be used for metering.

Measurements such as voltage, current, power, THD, frequency and power factor can be sourced from the MCCBs Trip Unit.

#### **Alarm Management**

Standard alarms and custom alarms can be setup using the TCPM or TPED.

#### **Historical Events**

The P\_SE Trip Unit will store measurement history and events; to access this data a TPCM or TPED is required to display these events.

#### Additional Certificates





#### Part Number Break Down



| Model | Туре                               |
|-------|------------------------------------|
| А     | Basic applications                 |
|       | (160250 A)                         |
| Р     | Mid to advanced applications       |
|       | (160630 A)                         |
| В     | High current, high kA applications |
|       | (1601600 A)                        |
| ZS    | Earth Leakage applications         |
|       | (125250 A)                         |
| XS    | Highest current applications       |
|       | (20003200 A)                       |

#### b) Ampere Frame

| 125  | Α |  |
|------|---|--|
| 160  |   |  |
| 250  |   |  |
| 400  |   |  |
|      |   |  |
| 630  |   |  |
| 800  | А |  |
| 1000 | А |  |
| 1250 | А |  |
| 1600 | А |  |
| 2000 | А |  |
| 2500 | А |  |
| 3200 | А |  |

| c) Shor | t Circuit | Break | Capacity | I <sub>cu</sub> (kA) |
|---------|-----------|-------|----------|----------------------|
| R       | 200       | kA    |          |                      |
| L       | 150       | kA    |          |                      |
| Р       | 125       | kA    |          |                      |
| S       | 110       | kA    |          |                      |
| G       | 100       | kA    |          |                      |
| H       | _ 85      | kA    |          |                      |
| Н       | 70        | kA    |          |                      |
| М       | 65        | kA    |          |                      |
| N       | 50        | kA    |          |                      |
| F       | 36        | kA    |          |                      |
| E       | 25        | kA    |          |                      |
| D       | Sw        | itch  |          |                      |

| d) Pole Pitch Size (mm) 1) |    |  |  |  |  |  |
|----------------------------|----|--|--|--|--|--|
| 1                          | 25 |  |  |  |  |  |
| 2                          | 30 |  |  |  |  |  |
| 3                          | 35 |  |  |  |  |  |
|                            |    |  |  |  |  |  |

e) No. of Poles

f) Trip Unit Rating (In) In xA

7)

8)

#### g) Trip Unit Type

- Adj Thermal Fix Magnetic 4) TF
- FF Fix Thermal Fix Magnetic
- Adj Thermal Adj Magnetic ТΜ
- Smart Ammeter 5) 6) SX
- ΒE Basic Electronic 6)
- Smart Energy 6) SE
- NN Non-Auto Switch

#### h) Trip Unit Option

- G Ground Fault 2)
  - Ν Neutral 2)
  - Ρ Pre-Trip Alarm 3)
  - SN Solid Neutral 9)

Notice: Not all combinations are possible. Confirm part number combination with NHP for availability.

160AF only

- For P\_SE versions these features are standard and therefore are not added to the end of the part number. PTA is standard with P electronic models and therefore P is not added to the end of the part number.
- 1. 2. 3. 4. Only available in A & ZS models
- 5. Only available in B models 6.
- Not available in A and ZS models
- Only available in A and B models (FF Only Trip Unit) Not available in A and B models (FF Only Trip Unit) ZS Models
- 7. 8. 9.





#### Available MCCBs in the TemBreak PRO range:

|           | Rating                      |                                                                                   | Frame Size                                                                         |                                                       |                                                       |                                                                     |                                                           |                               |                               |                                 |                                 |               |
|-----------|-----------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------|
| Short Cir | cuit Break Capacity<br>(kA) | 160                                                                               | 250                                                                                | 400                                                   | 630                                                   | 800                                                                 | 1000                                                      | 1250                          | 1600                          | 2000                            | 2500                            | 3200          |
| E         | 25                          | A160E – TF<br>A160E – FF<br>B160E – FF                                            | A250E – TM                                                                         | P400E-TM                                              | P630E – TM                                            |                                                                     |                                                           |                               |                               |                                 |                                 |               |
| F         | 36                          | A160F – TF<br>P160F – FF<br>P160F – TM<br>P160F – BE<br>P160F – BEG<br>P160F – SE | A250F – TM<br>P250F – TM<br>P250F – BE<br>P250F – BEG<br>P250F – BEG<br>P250F – SE | P400F – TM<br>P400F – BE<br>P400F – BEG<br>P400F – SE | P630F – TM<br>P630F – BE<br>P630F – BEG<br>P630F – SE | B800F – TM                                                          |                                                           |                               |                               |                                 |                                 |               |
| N         | 50                          | P160N – TM<br>P160N – BE<br>P160N – BEG<br>P160N – SE                             | P250N – TM<br>P250N – BE<br>P250N – BEG<br>P250N – SE                              | P400N – TM<br>P400N – BE<br>P400N – BEG<br>P400N – SE | P630N – TM<br>P630N – BE<br>P630N – BEG<br>P630N – SE | B800N – TM<br>B800N – BE<br>B800N – SX<br>B800N – SE                | B1000N – BE<br>B1000N – BEG<br>B1000N – SX<br>B1000N – SE | B1250N – BE<br>B1250N – BEG   | B1600N – BE<br>B1600N – BEG   |                                 |                                 |               |
| н         | 70                          | P160H – TM<br>P160H – BE<br>P160H – BEG<br>P160H – SE                             | P250H – TM<br>P250H – BE<br>P250H – BEG<br>P250H – SE                              | P400H – TM<br>P400H – BE<br>P400H – BEG<br>P400H – SE | P630H – TM<br>P630H – BE<br>P630H – BEG<br>P630H – SE | B800H – TM<br>B800H – BE<br>B800H – BEG<br>B800H – SX<br>B800H – SE | B1000H – BE<br>B1000H – BEG<br>B1000H – SX<br>B1000H – SE | B1250H – BE<br>B1250H – BEG   |                               |                                 |                                 |               |
| HL        | 85                          |                                                                                   |                                                                                    |                                                       |                                                       |                                                                     |                                                           | B1250HL – BE<br>B1250HL – BEG | B1600HL – BE<br>B1600HL – BEG | XS2000HL – BE<br>XS2000HL – BEG | XS2500HL – BE<br>XS2500HL – BEG | XS3200HL – BE |
| G         | 100                         |                                                                                   |                                                                                    |                                                       |                                                       | B800G – TM<br>B800G – BE<br>B800G – BEG<br>B800G – SX<br>B800G – SE |                                                           |                               |                               |                                 |                                 |               |
| S         | 110                         |                                                                                   |                                                                                    | P400S – TM<br>P400S – BE<br>P400S – BEG<br>P400S – SE | P630S – TM<br>P630S – BE<br>P630S – BEG<br>P630S – SE |                                                                     |                                                           |                               |                               |                                 |                                 |               |
| Р         | 125                         | B160P – TM                                                                        | B250P – TM<br>B250P – BE<br>B250P – SE                                             | B400P – BE<br>B400P – BEG                             |                                                       | B800P – BE<br>B800P – BEG<br>B800P – SX<br>B800P – SE               |                                                           |                               |                               |                                 |                                 |               |
| R         | 200                         | B160R – TM                                                                        | B250R – TM                                                                         | B400P – BE<br>B400P – BEG                             |                                                       | B800R – BE<br>B800R – BEG<br>B800R – SX<br>B800R – SE               |                                                           |                               |                               |                                 |                                 |               |
| D         | Switch                      | A160D – NN<br>P160D – NN                                                          | A250D – NN<br>P250D – NN                                                           | P400D – NN                                            | P630D – NN                                            | B800D – NN                                                          | B1000D – NN                                               | B1250D – NN                   | B1600D – NN                   | XS2000D - NN                    | XS2500D – NN                    |               |



#### Label Identification

The label on the MCCB features information to aid in product identification.



|   | Description              | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|---|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1 | Circuit Break Identifier | Identifies the model type, ampere frame, and Icu rating.                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 2 | Trip Unit type           | The Trip Unit type is indicated by the colour of the label.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|   |                          | White label – Thermal-magnetic type Trip Unit         Trip Units       FF, TF, FM, TM         Models       A, P, B, ZS         Ampere Frame       125 – 800         Strey label – electronic or non-auto type Trip Unit. To distinguish between the two, electronic Trip Units will have the "low" letter and non-auto will use the letter "D", Switch.         Trip Units       BE, BEG, BEGN, NN         Models       A, P, B, XS         Ampere Frame       160 – 3200 |  |  |  |  |  |
|   |                          | Blue Label – SMART electronic type Trip Unit<br>Trip Units SX, SE<br>Models P, B<br>Ampere Frame 160 – 1000                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 3 | Certifications           | Identifies the additional localised certifications of the product, in addition to the international product standard, IEC 60947-2 / AS/NZS IEC 60947-2.<br>For additional certifications please contact NHP.                                                                                                                                                                                                                                                              |  |  |  |  |  |



### P160\_SE and P250\_SE Information

| Frame / Model                                                                               | Attribute              | Unit                 | Condition    | P160F | P160N | P160H | P250F | P250N | P250H |
|---------------------------------------------------------------------------------------------|------------------------|----------------------|--------------|-------|-------|-------|-------|-------|-------|
| Number of Poles                                                                             |                        |                      |              | 3, 4  | 3, 4  | 3, 4  | 3, 4  | 3, 4  | 3, 4  |
| Nominal current ratings                                                                     | I <sub>CT</sub>        | (A)                  | @ 50°C       | 40 A  |
| Trip Unit ratings                                                                           | .01                    | ( )                  | 0            | 100 A |
|                                                                                             |                        |                      |              | 160 A |
|                                                                                             |                        |                      |              | -     | —     | —     | 250 A | 250 A | 250 A |
| Electrical characteristics                                                                  |                        |                      |              |       |       |       |       |       |       |
| Rated maximum operational voltage                                                           | Ue                     | (V)                  | AC 50/60 Hz  | 690   | 690   | 690   | 690   | 690   | 690   |
|                                                                                             |                        | (V)                  | DC           | _     | _     | _     | _     | _     | _     |
| Rated insulation voltage                                                                    | Ui                     | (V)                  |              | 800   | 800   | 800   | 800   | 800   | 800   |
| Rated impulse withstand voltage                                                             | Uimp                   | (kV)                 |              | 8     | 8     | 8     | 8     | 8     | 8     |
| Selectivity category                                                                        |                        |                      |              | А     | A     | Α     | A     | Α     | Α     |
| Rated short time withstand current                                                          | Icw                    | (kA)                 | 0.4 sec      | _     | -     | -     | -     | -     | _     |
| Ultimate breaking capacity                                                                  | <i>I</i> <sub>cu</sub> | (kA)                 | 690 Vac      | 6     | 6     | 6     | 6     | 6     | 6     |
| (IEC, JIS, AS/NZS)                                                                          |                        |                      | 400 /415 Vac | 36    | 50    | 70    | 36    | 50    | 70    |
|                                                                                             |                        |                      | 240 Vac      | 50    | 85    | 85    | 50    | 85    | 85    |
| Service breaking capacity                                                                   | Ics                    | (kA)                 | 690 Vac      | 6     | 6     | 6     | 6     | 6     | 6     |
| (IEC, JIS, AS/NZS)                                                                          | ics                    | (10-1)               | 400 /415 Vac | 36    | 50    | 50    | 36    | 50    | 50    |
| (IEC, JIS, AS/NZS)                                                                          |                        |                      | 220 /240 Vac | 50    | 85    | 85    | 50    | 85    | 85    |
| Protection Over Current Pelaces tures                                                       |                        |                      | 220/240 Vac  | 50    | 00    | 00    | 50    | 00    | 00    |
| Protection - Over Current Release types<br>SE Smart (Meter) Trip Unit fully adjustable LSIG |                        |                      |              |       |       |       |       |       |       |
| LT Adjustable 40% to 100% in 1% increments                                                  |                        | Standard             |              | _     | _     | _     | _     | _     | _     |
| LT Adjustable 40% to 100% in 1A increments                                                  |                        | Optional             |              | Std   | Std   | Std   | Std   | Std   | Std   |
| Instantaneous setting independently adjustable                                              |                        | Not Availab          |              | Std   | Std   | Std   | Std   | Std   | Std   |
| TPED and TPCM compatible                                                                    | M Req                  | Module Re            | quired       | Std   | Std   | Std   | Std   | Std   | Std   |
| Modbus RTU                                                                                  |                        |                      |              | M Req | M Req | M Req | M Reg | M Req | M Req |
| Installation (Std / Opt / - )                                                               |                        |                      |              |       |       |       |       |       | 1     |
| Front connection (FC)                                                                       |                        |                      |              | Std   | Std   | Std   | Std   | Std   | Std   |
| Extension bar (FB)                                                                          | Std                    | Chan dand            |              | Opt   | Opt   | Opt   | Opt   | Opt   | Opt   |
| Cable tunnel clamp (FW)                                                                     |                        | Standard<br>Optional |              | Opt   | Opt   | Opt   | Opt   | Opt   | Opt   |
| Rear Connection (RC)                                                                        |                        | Not Availab          | ماد          | Opt   | Opt   | Opt   | Opt   | Opt   | Opt   |
| DIN rail adaptor                                                                            |                        | Not Availat          |              | Opt   | Opt   | Opt   | Opt   | Opt   | Opt   |
| Withdrawable mechanism                                                                      |                        |                      |              | Opt   | Opt   | Opt   | Opt   | Opt   | Opt   |
| Plug-in                                                                                     |                        |                      |              | Opt   | Opt   | Opt   | Opt   | Opt   | Opt   |
| Reverse supply connection possible to 440V                                                  | -                      |                      |              | Yes   | Yes   | Yes   | Yes   | Yes   | Yes   |
| Dimensions w T                                                                              | Н                      | (mm)                 |              | 130   | 130   | 130   | 165   | 165   | 165   |
|                                                                                             | W                      | (mm)                 | 1 pole       | _     | _     | _     | -     | _     | _     |
|                                                                                             |                        | , ,                  | 2 pole       | _     | _     | _     | _     | _     | _     |
|                                                                                             |                        |                      | 3 pole       | 90    | 90    | 90    | 105   | 105   | 105   |
|                                                                                             |                        |                      | 4 pole       | 120   | 120   | 120   | 140   | 140   | 140   |
|                                                                                             | D                      | (mm)                 |              | 68    | 68    | 68    | 68    | 68    | 68    |
|                                                                                             |                        | ```                  |              |       |       |       |       |       |       |
|                                                                                             | Т                      | (mm)                 |              | 95.5  | 95.5  | 95.5  | 95.5  | 95.5  | 95.5  |
| Weight                                                                                      | W                      | (kg)                 | 3 pole       | 1.0   | 1.0   | 1.0   | 1.5   | 1.5   | 1.5   |
|                                                                                             |                        |                      | 4 pole       | 1.3   | 1.3   | 1.3   | 2     | 2     | 2     |
| Operation options (Std / Opt / - )                                                          | Std                    | Standard             |              |       |       |       |       |       |       |
| Toggle operation                                                                            |                        | Optional             |              | Std   | Std   | Std   | Std   | Std   | Std   |
| Extension handle TP-HS/HP or Direct mount T2HB                                              |                        | Not Availab          | ble          | Opt   | Opt   | Opt   | Opt   | Opt   | Opt   |
| Motor operation TP-MC                                                                       |                        |                      |              | Opt   | Opt   | Opt   | Opt   | Opt   | Opt   |
| Endurance                                                                                   | Electrical             | Cycles               |              | 30000 | 30000 | 30000 | 10000 | 10000 | 10000 |
|                                                                                             | Mechanica              | I Cycles             | 5            | 50000 | 50000 | 50000 | 30000 | 30000 | 30000 |



#### P400\_SE Information

| Frame / Model                                                                                                                                                                                                                         | Attribute       | Unit                                            | Condition         | P400F                                  | P400N                                  | P400H                                  | P400S                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------|-------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Number of Poles                                                                                                                                                                                                                       |                 |                                                 |                   | 3, 4                                   | 3, 4                                   | 3, 4                                   | 3, 4                                   |
| Nominal current ratings                                                                                                                                                                                                               | I <sub>CT</sub> | (A)                                             | @ 50°C            | 250 A                                  | 250 A                                  | 250 A                                  | 250 A                                  |
| Trip Unit ratings                                                                                                                                                                                                                     |                 |                                                 |                   | 400 A                                  | 400 A                                  | 400 A                                  | 400 A                                  |
| Electrical characteristics                                                                                                                                                                                                            |                 |                                                 |                   |                                        |                                        |                                        |                                        |
| Rated maximum operational voltage                                                                                                                                                                                                     | Ue              | (V)<br>(V)                                      | AC 50/60 Hz<br>DC | 690<br>—                               | 690<br>—                               | 690<br>—                               | 690<br>—                               |
| Rated insulation voltage                                                                                                                                                                                                              | Ui              | (V)                                             |                   | 800                                    | 800                                    | 800                                    | 800                                    |
| Rated impulse withstand voltage                                                                                                                                                                                                       | Uimp            | (kV)                                            |                   | 8                                      | 8                                      | 8                                      | 8                                      |
| Selectivity category                                                                                                                                                                                                                  |                 |                                                 |                   | В                                      | В                                      | В                                      | В                                      |
| Rated short time withstand current                                                                                                                                                                                                    | Icw             | (kA)                                            | 0.4 sec           | 5                                      | 5                                      | 5                                      | 5                                      |
| Ultimate breaking capacity                                                                                                                                                                                                            | I <sub>cu</sub> | (kA)                                            | 690 Vac           | 7                                      | 12                                     | 12                                     | 12                                     |
| (IEC, JIS, AS/NZS)                                                                                                                                                                                                                    |                 | ()                                              | 400 /415 Vac      | 36                                     | 50                                     | 70                                     | 110                                    |
| (                                                                                                                                                                                                                                     |                 |                                                 | 240 Vac           | 50                                     | 85                                     | 100                                    | 125                                    |
| Service breaking capacity                                                                                                                                                                                                             | l <sub>cs</sub> | (kA)                                            | 690 Vac           | 7                                      | 12                                     | 12                                     | 120                                    |
|                                                                                                                                                                                                                                       | ICS             | (KA)                                            | 400 /415 Vac      | 36                                     | 50                                     | 70                                     | 110                                    |
| (IEC, JIS, AS/NZS)                                                                                                                                                                                                                    |                 |                                                 |                   |                                        |                                        |                                        |                                        |
| Protection - Over Current Release types                                                                                                                                                                                               | _               |                                                 | 220 /240 Vac      | 50                                     | 85                                     | 100                                    | 125                                    |
| Smart (Meter) Trip Unit fully adjustable LSIG<br>LT Adjustable 40% to 100% in 1% increments<br>LT Adjustable 40% to 100% in 1A increments<br>Instantaneous setting independently adjustable<br>TPED and TPCM compatible<br>Modbus RTU | Opt<br>—        | Standard<br>Optional<br>Not Availa<br>Module Re |                   | —<br>Std<br>Std<br>Std<br>M Reg        | —<br>Std<br>Std<br>Std<br>M Reg        | —<br>Std<br>Std<br>M Reg               | —<br>Std<br>Std<br>M Reg               |
| Installation (Std / Opt / – )<br>Front connection (FC)<br>Extension bar (FB)<br>Cable tunnel clamp (FW)<br>Rear connection (RC)<br>DIN rail adaptor<br>Withdrawable mechanism<br>Plug-in                                              | Opt             | Standard<br>Optional<br>Not Availa              | ble               | Std<br>Std<br>Opt<br>Opt<br>Opt<br>Opt | Std<br>Std<br>Opt<br>Opt<br>Opt<br>Opt | Std<br>Std<br>Opt<br>Opt<br>Opt<br>Opt | Std<br>Std<br>Opt<br>Opt<br>Opt<br>Opt |
| Reverse supply connection possible to 440V                                                                                                                                                                                            |                 |                                                 |                   | Yes                                    | Yes                                    | Yes                                    | Yes                                    |
| Dimensions W T D                                                                                                                                                                                                                      | H<br>W          | (mm)<br>(mm)                                    | · · ·             | 260<br>—<br>—<br>140<br>185            | 260<br>—<br>—<br>140<br>185            | 260<br>—<br>—<br>140<br>185            | 260<br>—<br>140<br>185                 |
|                                                                                                                                                                                                                                       | D               | (mm                                             |                   |                                        |                                        |                                        |                                        |
|                                                                                                                                                                                                                                       |                 |                                                 |                   | 103                                    | 103                                    | 103                                    | 103                                    |
|                                                                                                                                                                                                                                       | Т               | (mm                                             |                   | 145                                    | 145                                    | 145                                    | 145                                    |
| Weight                                                                                                                                                                                                                                | W               | (kg)                                            | 3 pole<br>4 pole  | 4.3<br>5.7                             | 4.3<br>5.7                             | 4.3<br>5.7                             | 4.3<br>5.7                             |
| Operation options (Std / Opt / — )<br>Toggle operation<br>Extension handle TP-HS/HP or Direct mount T2HB<br>Motor operation TP-MC<br>Endurance                                                                                        | Opt             | Standard<br>Optional<br>Not Availa<br>Cycle     |                   | Std<br>Opt<br>Opt<br>6000              | Std<br>Opt<br>Opt<br>6000              | Std<br>Opt<br>Opt<br>6000              | Std<br>Opt<br>Opt<br>6000              |
|                                                                                                                                                                                                                                       | Mechanical      |                                                 |                   | 15000                                  | 15000                                  | 15000                                  | 15000                                  |



#### P630\_SE Information

| Frame / Model                                                                                                                                                                                                                                                                    | Attribute        | Unit                                            | Condition         | P630F                                  | P630N                                  | P630H                                  | P630S                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------|-------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Number of Poles                                                                                                                                                                                                                                                                  |                  |                                                 |                   | 3, 4                                   | 3, 4                                   | 3, 4                                   | 3, 4                                   |
| Nominal current ratings                                                                                                                                                                                                                                                          | I <sub>CT</sub>  | (A)                                             | @ 50°C            | 630A                                   | 630A                                   | 630A                                   | 630A                                   |
| Trip Unit ratings                                                                                                                                                                                                                                                                |                  |                                                 | _                 |                                        |                                        |                                        |                                        |
| Electrical characteristics                                                                                                                                                                                                                                                       |                  |                                                 |                   |                                        |                                        |                                        |                                        |
| Rated maximum operational voltage                                                                                                                                                                                                                                                | Ue               | (V)<br>(V)                                      | AC 50/60 Hz<br>DC | 690<br>—                               | 690<br>—                               | 690<br>—                               | 690<br>—                               |
| Rated insulation voltage                                                                                                                                                                                                                                                         | Ui               | (V)                                             |                   | 800                                    | 800                                    | 800                                    | 800                                    |
| Rated impulse withstand voltage                                                                                                                                                                                                                                                  | U <sub>imp</sub> | (kV)                                            |                   | 8                                      | 8                                      | 8                                      | 8                                      |
| Selectivity category                                                                                                                                                                                                                                                             |                  | ` '                                             |                   | А                                      | А                                      | А                                      | А                                      |
| Rated short time withstand current                                                                                                                                                                                                                                               | Icw              | (kA)                                            | 0.4 sec           | _                                      | _                                      | _                                      | _                                      |
| Ultimate breaking capacity                                                                                                                                                                                                                                                       | I <sub>cu</sub>  | (kA)                                            | 690 Vac           | 7                                      | 12                                     | 12                                     | 12                                     |
| (IEC, JIS, AS/NZS)                                                                                                                                                                                                                                                               | 100              | (,                                              | 400 /415 Vac      | 36                                     | 50                                     | 70                                     | 110                                    |
| (.=0,0.0,1.0,1.=0)                                                                                                                                                                                                                                                               |                  |                                                 | 240 Vac           | 50                                     | 85                                     | 100                                    | 125                                    |
| Service breaking capacity                                                                                                                                                                                                                                                        | 1                | (4.4.)                                          | 690 Vac           | 7                                      | 12                                     | 100                                    | 120                                    |
|                                                                                                                                                                                                                                                                                  | I <sub>cs</sub>  | (kA)                                            |                   |                                        |                                        |                                        |                                        |
| (IEC, JIS, AS/NZS)                                                                                                                                                                                                                                                               |                  |                                                 | 400 /415 Vac      | 36                                     | 50                                     | 70                                     | 110                                    |
|                                                                                                                                                                                                                                                                                  |                  |                                                 | 220 /240 Vac      | 50                                     | 85                                     | 100                                    | 125                                    |
| Protection - Over Current Release types<br>Smart (Meter) Trip Unit fully adjustable LSIG<br>LT Adjustable 40% to 100% in 1% increments<br>LT Adjustable 40% to 100% in 1A increments<br>Instantaneous setting independently adjustable<br>TPED and TPCM compatible<br>Modbus RTU | Opt (            | Standard<br>Optional<br>Not Availa<br>Module Re |                   | —<br>Std<br>Std<br>Std<br>M Req        | —<br>Std<br>Std<br>M Req               | —<br>Std<br>Std<br>Std<br>M Reg        | –<br>Std<br>Std<br>Std<br>M Reg        |
| Installation (Std / Opt / – )<br>Front connection (FC)<br>Extension bar (FB)<br>Cable tunnel clamp (FW)<br>Rear connection (RC)<br>DIN rail adaptor<br>Withdrawable mechanism<br>Plug-in                                                                                         | Opt (            | Standard<br>Dptional<br>Not Availa              | ble               | Std<br>Std<br>Opt<br>Opt<br>Opt<br>Opt | Std<br>Std<br>Opt<br>Opt<br>Opt<br>Opt | Std<br>Std<br>Opt<br>Opt<br>Opt<br>Opt | Std<br>Std<br>Opt<br>Opt<br>Opt<br>Opt |
| Reverse supply connection possible to 440V                                                                                                                                                                                                                                       |                  |                                                 |                   | Yes                                    | Yes                                    | Yes                                    | Yes                                    |
| Dimensions                                                                                                                                                                                                                                                                       | H<br>W           | (mm<br>(mm                                      | ,                 | 260<br>—<br>—<br>140<br>185            | 260<br>—<br>—<br>140<br>185            | 260<br>—<br>—<br>140<br>185            | 260<br>—<br>—<br>140<br>185            |
|                                                                                                                                                                                                                                                                                  | D                | (mm                                             |                   | 103                                    | 103                                    | 103                                    | 103                                    |
|                                                                                                                                                                                                                                                                                  | Т                | (mm                                             | ,                 | 145                                    | 145                                    | 145                                    | 145                                    |
| Woight                                                                                                                                                                                                                                                                           |                  | · ·                                             | ,                 | 5.0                                    | 5.0                                    | -                                      | 5.0                                    |
| Weight                                                                                                                                                                                                                                                                           | W                | (kg)                                            | 3 pole<br>4 pole  | 5.0<br>6.6                             | 5.0<br>6.6                             | 5.0<br>6.6                             | 5.0<br>6.6                             |
| Operation options (Std / Opt / — )<br>Toggle operation<br>Extension handle TP-HS/HP or Direct mount T2HB<br>Motor operation TP-MC                                                                                                                                                | Opt d<br>— I     | Standard<br>Optional<br>Not Availa              |                   | Std<br>Opt<br>Opt                      | Std<br>Opt<br>Opt                      | Std<br>Opt<br>Opt                      | Std<br>Opt<br>Opt                      |
| Endurance                                                                                                                                                                                                                                                                        | Electrical       | Cycle<br>Cycle                                  |                   | 4000<br>15000                          | 4000<br>15000                          | 4000<br>15000                          | 4000<br>15000                          |





### **Internal Accessories**

Internal accessories include Auxiliary and Alarm contacts, Shunt Trip and Undervoltage Trip (UVT) modules, which may be installed under the front cover of the MCCB in various combinations to provide additional functionality and connection with external control circuits.

#### **Auxiliary & Alarm Switches**

#### **Auxiliary Contact**

An auxiliary contact can be installed to indicate whether an MCCB is Open (both OFF and Tripped positions) or Closed (ON). Auxiliary contacts come in either general purpose or micro-switch type, with some combinations prewired or with terminals. Each contact type is provided as a single change-over switching arrangement (1x C/O).

#### **Alarm Contact**

An alarm contact can be installed to indicate whether an MCCB is in the Tripped or Not Tripped position (ON, OFF). Alarm contacts come in either general purpose or micro-switch type, with some combinations pre-wired or with terminals. Each contact type is provided as a single change-over switching arrangement (1x C/O).

| Part Number   | Description           | Contact Type    | Connection Type |
|---------------|-----------------------|-----------------|-----------------|
| T2AX00LML3SWA | Auxiliary             | General purpose | Pre-wired       |
| T2AX00LML3STA | Auxiliary             | General purpose | Terminal        |
| T2AX00LML3RWA | Auxiliary             | Micro-switch    | Pre-wired       |
| T2AL00LML3SWA | Alarm; left side only | General purpose | Pre-wired       |
| T2AL00LML3STA | Alarm; left side only | General purpose | Terminal        |
| T2AL00LML3RWA | Alarm; left side only | Micro-switch    | Pre-wired       |

| General purpose contact |                   |                   |              |                   |                   |                 |       |     |  |
|-------------------------|-------------------|-------------------|--------------|-------------------|-------------------|-----------------|-------|-----|--|
|                         | AC (V)            |                   |              | DC (V)            |                   |                 |       |     |  |
|                         | Ampe              | res (A)           | Amperes (A)  |                   | Minimum Load      |                 | Volts |     |  |
| Volts (V)               | Resistive<br>Load | Inductive<br>Load | Volts<br>(V) | Resistive<br>Load | Inductive<br>Load |                 |       | (V) |  |
| 480                     | -                 | —                 | 250          | -                 | -                 |                 |       |     |  |
| 250                     | 3                 | 2                 | 125          | 0.4               | 0.05              | 100 mA @ 15 Vdc |       | 30  |  |
| 125                     | 3                 | 2                 | 30           | 3                 | 2                 |                 |       |     |  |

| Micro-switch contact |                   |              |  |  |  |
|----------------------|-------------------|--------------|--|--|--|
|                      | DC (V)            |              |  |  |  |
| Volts                | Amperes (A)       | Minimum Load |  |  |  |
| (V)                  | Resistive<br>Load |              |  |  |  |
| 30                   | 0.1               | 1 mA @ 5 Vdc |  |  |  |

#### SMART Auxiliary AX / AL Status Indicator

The SMART auxiliary is dedicated to TemBreak *PRO* SMART MCCB range. It allows the SMART Trip Unit to log and count the number of opening / closing cycles, counting the number of electromechanical fault trips and indicate the actual mechanical OPEN CLOSED TRIP status of the breaker's main contacts. The auxiliary mounts inside the MCCB and is connected to the MCCBs Trip Unit via the "ACP" connector socket inside the MCCB, which is under the MCCBs accessory cover. It takes the position of 1 Aux and 1 Alarm on the left-hand side of the MCCB.



The SMART contact blocks are available in three versions:

| Part Number | Description                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|
| TPSS00MXLSW | Auxiliary contact SMART AX / AL, standard type use for applications 125 – 250 Vac                                                  |
| TPSS00MXLRW | Auxiliary contact SMART AX / AL, micro-current type use for applications 125 Vac 100mA / 24 - 30 Vdc 100mA (e.g. PLC applications) |
| TPSS00NA    | AX / AL SMART MCCB Cycle Counter                                                                                                   |
|             |                                                                                                                                    |



**Notice**: The TPSS00MXLSW and TPSS00MXLRW types include voltage free switching contacts AX and AL. These contacts are provided with pre-wired wired contacts.



**Notice**: It is recommended to use 24 Vdc backup supply to the MCCB to ensure the SMART AUX continues to operate in the event of upstream power failure.





### **Internal Accessories**

#### Shunt Trip

A shunt (normally de-energized) can be installed to trip the MCCB by applying voltage to the shunt coil.

| Part Number  | Rated \ | /oltage | Connection Type      |
|--------------|---------|---------|----------------------|
|              | AC (V)  | DC (V)  |                      |
| T2SH00LA10T  | 110     | _       | Terminal             |
| T2SH00LA20T  | 230240  | —       | Terminal             |
| T2SH00LA40T  | 400415  | _       | Terminal             |
| T2SH00LD01T  | -       | 12      | Terminal             |
| T2SH00LD02T  | -       | 24      | Terminal             |
| T2SH00LD04T  | -       | 48      | Terminal             |
| T2SH00LD10T  | -       | 110     | Terminal             |
| T2SH00LD20T  | -       | 230     | Terminal             |
|              |         |         |                      |
| T2SH00LA10WA | 110     | _       | Pre-wired cage clamp |
| T2SH00LA20WA | 230240  | _       | Pre-wired cage clamp |
| T2SH00LA40WA | 400415  | —       | Pre-wired cage clamp |
| T2SH00LD01WA |         | 12      | Pre-wired cage clamp |
| T2SH00LD02WA | -       | 24      | Pre-wired cage clamp |
| T2SH00LD04WA | _       | 48      | Pre-wired cage clamp |
| T2SH00LD10WA | _       | 110     | Pre-wired cage clamp |
| T2SH00LD20WA | _       | 230     | Pre-wired cage clamp |



NI

| Rated voltage           | AC (V) |        |        | DC (V) |       |      |        |        |
|-------------------------|--------|--------|--------|--------|-------|------|--------|--------|
|                         | 100120 | 200240 | 380450 | 12     | 24    | 48   | 100120 | 200240 |
| Excitation current (mA) | 16.0   | 16.0   | 6.2    | 160.0  | 124.0 | 32.0 | 14.0   | 12.0   |

#### **Under Voltage Trips**

A UVT (normally energized) can be installed to trip the MCCB removing voltage from the UVT coil.

| Part Number   | Rated v | voltage | Compat | ible MCCB  | Connection Type      | Notes            |
|---------------|---------|---------|--------|------------|----------------------|------------------|
|               | AC (V)  | DC (V)  | 3P     | 4P         |                      |                  |
| T2UV00LA10NT  | 110     | _       | All    | P160 / 250 | Terminal             | Instantaneous    |
| T2UV00LA20NT  | 230240  | _       | All    | P160 / 250 | Terminal             | Instantaneous    |
| T2UV00LA40NT  | 400440  | _       | All    | P160 / 250 | Terminal             | Instantaneous    |
| T2UV00LD02NT  |         | 24      | All    | P160 / 250 | Terminal             | Instantaneous    |
| T2UV00LD10NT  |         | 110     | All    | P160 / 250 | Terminal             | Instantaneous    |
| T2UV00LD20NT  | _       | 230     | All    | P160 / 250 | Terminal             | Instantaneous    |
|               |         |         |        |            |                      |                  |
| T2UV00LA10DS  | 110     | _       | All    | P160 / 250 | Terminal             | Time Delay 500ms |
| T2UV00LA24DS  | 230240  | _       | All    | P160 / 250 | Terminal             | Time Delay 500ms |
| T2UV00LA45DS  | 440450  | —       | All    | P160 / 250 | Terminal             | Time Delay 500ms |
| T2UV00LD02DS  | -       | 24      | All    | P160 / 250 | Terminal             | Time Delay 500ms |
| T2UV00LD10DS  | _       | 110     | All    | P160 / 250 | Terminal             | Time Delay 500ms |
| T2UV00LD24DS  | -       | 230     | All    | P160 / 250 | Terminal             | Time Delay 500ms |
|               |         |         |        |            |                      |                  |
| T2UV00LA10DL  | 110     | _       | —      | P400 / 630 | Terminal             | Time Delay 500ms |
| T2UV00LA24DL  | 230240  | -       | _      | P400 / 630 | Terminal             | Time Delay 500ms |
| T2UV00LA40DL  | 380415  | -       | _      | P400 / 630 | Terminal             | Time Delay 500ms |
| T2UV00LA45DL  | 440450  | _       | _      | P400 / 630 | Terminal             | Time Delay 500ms |
| T2UV00LD02DL  |         | 24      | —      | P400 / 630 | Terminal             | Time Delay 500ms |
| T2UV00LD10DL  |         | 110     | —      | P400 / 630 | Terminal             | Time Delay 500ms |
| T2UV00LD24DL  |         | 230     | —      | P400 / 630 | Terminal             | Time Delay 500ms |
|               |         |         |        |            |                      |                  |
| T2UV00LA10NWA | 110     | -       | All    | P160 / 250 | Pre-wired cage clamp | Instantaneous    |
| T2UV00LA20NWA | 230240  | _       | All    | P160 / 250 | Pre-wired cage clamp | Instantaneous    |
| T2UV00LA40NWA | 440450  | —       | All    | P160 / 250 | Pre-wired cage clamp | Instantaneous    |
| T2UV00LD02NWA | —       | 24      | All    | P160 / 250 | Pre-wired cage clamp | Instantaneous    |
| T2UV00LD10NWA | —       | 110     | All    | P160 / 250 | Pre-wired cage clamp | Instantaneous    |
| T2UV00LD20NWA | _       | 230     | All    | P160 / 250 | Pre-wired cage clamp | Instantaneous    |



| Rated Voltage           |        | AC (V) |        |      | DC (V) |        |  |  |
|-------------------------|--------|--------|--------|------|--------|--------|--|--|
| -                       | 100120 | 200240 | 380450 | 24   | 100120 | 200240 |  |  |
| Excitation current (mA) | 1.3    | 1.1    | 2.0    | 22.0 | 9.0    | 3.7    |  |  |





### P\_SE Only MCCB Accessories

Notice: The following list of accessories are unique to the P\_SE model MCCB. For other accessories in the TemBreak PRO series, refer to the TemBreak PRO technical catalogues, respective user manuals, and installation instructions.

#### TemView PRO (TPED)

The TemView PRO (TPED) is an optional backlit LED external display which permits reading and writing data of the P\_SE MCCB Trip Unit Trip Unit, including protection settings, energy measurements, alarms, and event logs. It is used where direct access to the embedded display of the MCCB is not permitted, or otherwise enclosed and inaccessible.

The TPED can be panel mounted to any suitable enclosure which houses the MCCB. For example, a switchboard door or panelboard escutcheon. Data from the MCCB is communicated to the TPED via the RJ9 to CIP cable assembly and plugs directly into the dedicated port on the MCCB.

For more information on the TPED, refer to the TemView PRO User Manual and Installation instructions.

| TPED Function                       | Read         | Write        |
|-------------------------------------|--------------|--------------|
| Protection Settings                 | $\checkmark$ | $\checkmark$ |
| Measurements                        | $\checkmark$ | _            |
| Alarms                              | $\checkmark$ | $\checkmark$ |
| Configuration                       | $\checkmark$ | _            |
| Historical event log                | $\checkmark$ | -            |
| Circuit breaker identification data | $\checkmark$ | _            |

| Part Number | Description                                      |
|-------------|--------------------------------------------------|
| TPED00N     | External monitor and configurator for P_SE MCCBs |

#### **Technical Data**

| Attribute             | Value                                  |
|-----------------------|----------------------------------------|
| Dimensions            | 97 x 97 x 46 mm (27mm behind the door) |
| Door cut-out          | 92 x 92 mm                             |
| Screen size           | 37 x 78 mm                             |
| Viewing backlight     | Backlit blue                           |
| Temperature operation | -10 ° C + 55 ° C                       |
| Pollution Category    |                                        |
| Degree of protection  | IP65 (rear is IP20)                    |



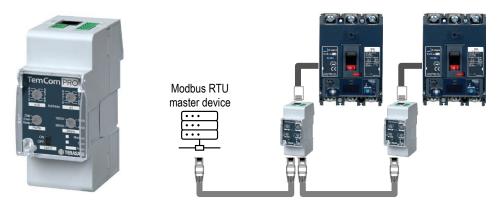
| Terminals/Plugs | Ratings                                        | Notes                                |
|-----------------|------------------------------------------------|--------------------------------------|
| Power Supply    | Voltage - 24 V DC (+/- 30%)<br>Current – 85 mA | Supplied via CIP plug from P_SE MCCB |
| Micro USB       | —                                              | For upgrading firmware               |



Notice: Cables are not provided with the TPED. Refer to CIP-RJ9 Cables section for selection.






### P\_SE Only MCCB Accessories

#### TemCom PRO (TPCM)

The TemCom *PRO* communications module (TPCM) communicates directly with the TemBreak *PRO* Smart Energy MCCB Trip Unit via CIP connection cable, enabling the MCCB to operate as a slave device on a Modbus RTU network via RS-485. The TPCM polls the MCCB at regular intervals, making data accessible within Modbus holding registers. Data may also be written over Modbus to enact changes to the configuration and protection settings of the Trip Unit. The TPCM module also offers optional embedded Digital I/O which is accessible over Modbus 10).

| TPCM Function                       | Read         | Write        |
|-------------------------------------|--------------|--------------|
| Protection Settings                 | $\checkmark$ | $\checkmark$ |
| Measurements                        | $\checkmark$ | -            |
| Alarms                              | $\checkmark$ | $\checkmark$ |
| Configuration                       | $\checkmark$ | -            |
| Historical event log                | $\checkmark$ | -            |
| Circuit breaker identification data | $\checkmark$ | -            |
| Digital Input/Output Contacts       | √ 1)         | √ 1)         |

The TPCM utilizes multiple RJ45 MODBUS ports for RS-485 communication. The use of both ports allows daisy chaining of multiple TPCM and with other third-party Modbus RTU devices for up to 32 devices in series.



For more information on the TPCM, refer to the TemCom PRO User Manual and Installation instructions.

| Part Number | Description                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------|
| TPCM00D02N  | Modbus RTU communications module without embedded I/O                                            |
| TPCM00D02W  | Modbus RTU communications module with embedded I/O included, 2x Digital input, 2x Digital output |

#### Technical Data

| Attribute               | Value                                                |
|-------------------------|------------------------------------------------------|
| Width                   | 2 modules (17.5mm per module)                        |
| Communications Protocol | Modbus RTU (RS-485)                                  |
| Compatible MCCBs        | P_SE MCCBs ONLY (1 required per MCCB)                |
| Temperature Ratings     | Operational: -25 - +70 °C Storage: -35 - +70 °C      |
| Humidity                | Operational: 95% RH @ 40 °C Storage: 95 % RH @ 55 °C |

| Terminals/Plugs | Ratings                                 |                             | Terminal Number/s | Cable Size         |
|-----------------|-----------------------------------------|-----------------------------|-------------------|--------------------|
| Power Supply    | Voltage – 24 V DC ± 30%                 | Current Consumption - 40 mA | + /-              | Colid and Strandod |
| Inputs ^        | Voltage – DC 24 V (15 - 30 V DC)        | Current – 2 mA - 15 mA      | 1, 2, 3, 4        | Solid and Stranded |
| Output ^        | Voltage – ≤ 100V DC (norm. 24, 48 V DC) | Max Current – 50mA          | 5, 6, 7, 8        | 0.5 1.5 ጠጠ-        |
| MCCB Coms       | Signal / Control Voltage – 24VDC        |                             | COM               | RJ9                |
| Modbus (RTU)    | -                                       |                             | MODBUS 1 & 2      | RJ45               |



**Notice**: Cables are not provided with the TPCM. Refer to <u>CIP-RJ9 Cables</u> section and TemCom *PRO* User Manual and Installation Instructions for selection.

^ TPCM00D02W model only with embedded digital I/O



### P\_SE Only MCCB Accessories

#### **Connection Cables**

#### **CIP-RJ9** cable

The physical connection between the TPED or TPCM and the P\_SE MCCB is via the CIP adapter cable, which provides both the proprietary communications link and auxiliary power supply to the Trip Unit.

The CIP adapter cable is comprised on one end a CIP connector which plugs into the CIP socket on the MCCB, and the other end either RJ9 plug for connection to the TPED or TPCM.

These are pre-wired adapters which are available in various lengths as required.

| Connector | Part number reference                            | Compatible MCCB | Length |
|-----------|--------------------------------------------------|-----------------|--------|
|           | TPPHQTT330H – CIP to RJ9                         | P160 / P250     | 0.5 m  |
|           | TPPHQTT340H – CIP to RJ9                         | P160 / P250     | 1.5 m  |
|           | TPPHQTT350H – CIP to RJ9                         | P160 / P250     | 3 m    |
|           | TPPHQTT360H – CIP to RJ9                         | P160 / P250     | 5 m    |
|           | TPPHQTT370H – CIP to RJ9                         | P160 / P250     | 10 m   |
|           | TPPHQTT140H – CIP to free wire                   | P160 / P250     | 1.2m   |
| CIP       | (un-terminated end for hardwired 24V dc to MCCB) |                 | 1.2111 |
| CIP       | TPPHQTT430H – CIP to RJ9                         | P400 / P630     | 0.5 m  |
|           | TPPHQTT440H – CIP to RJ9                         | P400 / P630     | 1.5 m  |
|           | TPPHQTT450H – CIP to RJ9                         | P400 / P630     | 3 m    |
|           | TPPHQTT460H – CIP to RJ9                         | P400 / P630     | 5 m    |
|           | TPPHQTT470H – CIP to RJ9                         | P400 / P630     | 10 m   |
|           | TPPHQTT160H – CIP to free wire                   | P400 / P630     | 1.2m   |
|           | (un-terminated end for hardwired 24V dc to MCCB) |                 | 1.2111 |

#### ZSI cable

Zone Selective Interlocking is achieved via hardwired connection between SMART MCCBs. Refer to the <u>Zone Selective</u> <u>Interlocking Function (ZSI)</u> section for more information.

| Connector    | Accessories Reference       | Length | Number of Wires | Wire Identification                                       |
|--------------|-----------------------------|--------|-----------------|-----------------------------------------------------------|
| ZSI1 or ZSI2 | TPPHQTT150H – ZSI - Adaptor | 1.20m  |                 | Common: Brown<br>Short time signal: White<br>Earth: Green |

#### OAC and PTA cable

The P\_SE MCCB provides on-board digital outputs used for an Optional Alarm Contact (OAC) and Pre-Trip Alarm (PTA) for physical output of alarm events. Refer to the <u>Alarms</u> section for more information.

| Connector  | Accessories Reference     | Length | Number of Wires | Switching rating        |
|------------|---------------------------|--------|-----------------|-------------------------|
| OAC or PTA | TPPHQTT130H – OAC and PTA | 1.20m  | 2               | Max. 100mA at 24V ac/dc |









## Plugs & Ports

The P\_SE circuit breaker is equipped with specific connectors for connecting interfacing devices and accessories.

| Port |                         | Description                                                                                                                                                                                                |
|------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ΡΤΑ  | PTA                     | Used to connect the PTA output contact to send the pre-trip alarm over a local signalling circuit.<br>Located on the outside left-hand side of the MCCB.                                                   |
| OAC  |                         | The OAC port is an output contact used to send the optional alarm over a local signalling circuit. Located under the front cover.                                                                          |
| MIP  |                         | Maintenance Interface Port – for temporary connection to Trip Unit testing, servicing, and maintenance tools.<br>Located to the right of the embedded display front cover.                                 |
| CIP  | → (1)<br>+ (1)<br>+ (1) | Communications Input Port – Multiple concurrent CIP connections are possible and are used to connect the TPED, an external 24V dc power supply and/or the TPCM as required. Located under the front cover. |
| ACP  |                         | Used to connect the AX/AL SMART auxiliary.<br>Located under the front cover.                                                                                                                               |
| ZSI1 |                         | Present only on P250_SE, P400_SE and P630_SE versions and used to connect the downstream circuit breakers to implement zone selective interlocking (ZSI). Located under the front cover.                   |
| ZSI2 |                         | Used to connect the upstream circuit breaker to implement zone selective interlocking (ZSI). Located under the front cover.                                                                                |



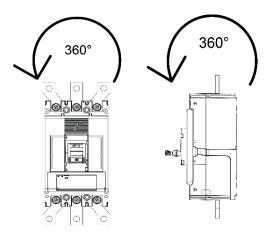
Notice: Port images are representative only. Locations differ slightly for the various ampere frame sizes

NHP



#### Precautions




**WARNING**: To prevent electrical shock and damage to equipment, disconnect and isolate power source upstream of the MCCB before installing or servicing the MCCB including its connected accessories.

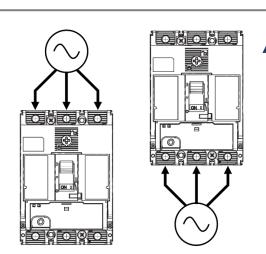


**Notice**: To ensure correct performance, and integrity of equipment, the installation instructions and recommendations provided herein shall be respected. Refer to the respective user manual and installation instructions provided with the MCCB and associated accessories.

#### **Mounting Angles**

TemBreak PRO MCCBs may be mounted at any angle without affecting performance.




#### **Direction of Power Supply**

Power supply may be fed in either direction with respect to the MCCB without affecting performance.



**Notice**: To ensure correct measurements and energy values, the MCCB must be configured with the correct direction of power supply using either TPED or TPCM. Refer to <u>Power flow direction and quadrant</u> section.

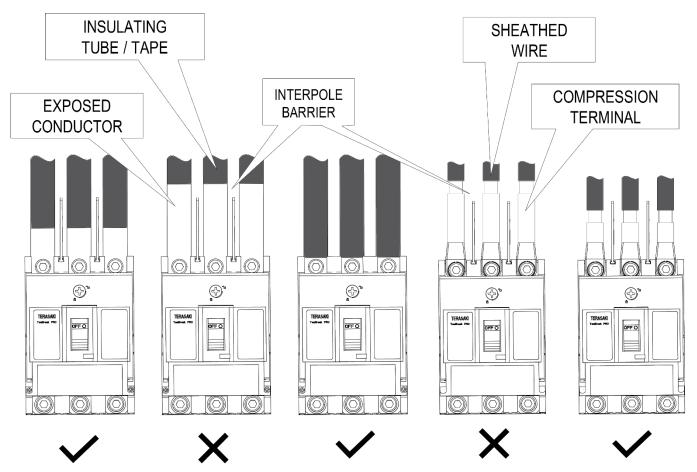
Positive (+) Forward/Normal Supply



Negative (–) Reverse Supply



#### Clearances




**WARNING**: Exposed conductors including terminals at attached busbars must be insulated to avoid possible short-circuit or earth faults due any foreign matter coming into contact with the conductors.

#### Phase to Phase and Earth

Interruption of large currents during fault or normal switching operation produces ionised gases and arcing materials which expelled from the vents at the top of the MCCB for P160/P250, and top and bottom for P400/P630. These ionised gases are highly conductive, concentrated, and at an elevated temperature when it exits the MCCB via the arc vents. Care must be taken to avoid an arcing fault from occurring due to the presence of concentrated ionised gases creating a conductive path between exposed conductors. Incoming conductors must therefore be insulated the full length up to the terminal opening of the MCCB, ensuring bare conductors are not exposed directly to concentrated ionised gases. This also applies to the attached busbars supplied as part of the MCCB.

Interpole barriers or terminal covers may be used to achieve creepage and clearance requirements. Conductors must not impede the flow of ionised gas and allow it to clear and disperse safety. Interpole barriers are supplied as standard with Terasaki MCCBs for the line side only. 2 barriers with 3P MCCBs and 3 with 4P MCCBs. In cases where two different MCCB types are installed one above the other, the insulation distance between the two models should be as for the lower model.

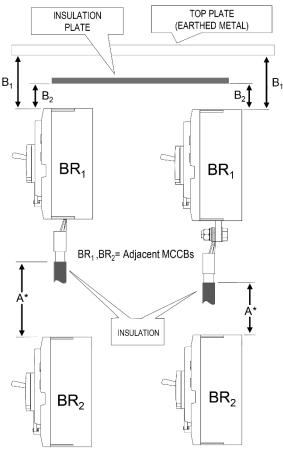


NHE



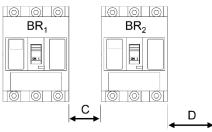


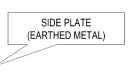
#### Insulating Distance


When earth metal is installed within proximity of the breakers, the correct insulating distance must be maintained, (refer to Minimum Clearance). This distance is necessary to allow the exhausted arc gases to disperse. This could include the mounting plate or side panel within a switchboard.

#### **Minimum Clearance**

Below illustrates the minimum clearance that must be maintained


| Dim.           | Description                                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A              | Distance from lower breaker to open charging part of terminal on<br>upper breaker (front connection) or the distance from lower<br>breaker to upper breaker end (rear connection and plug-in type) |
| B1             | Distance from breaker end to ceiling (earthed metal)                                                                                                                                               |
| B <sub>2</sub> | Distance from breaker end to insulator                                                                                                                                                             |
| С              | Clearance between breakers                                                                                                                                                                         |
| D              | Distance from breaker side to side plate (earthed metal)                                                                                                                                           |
| E              | Length of insulation over exposed conductors.                                                                                                                                                      |


|                   | Distances (mm) |                |                |   |    |   |
|-------------------|----------------|----------------|----------------|---|----|---|
| MCCB Cat. No.     | А              | B <sub>1</sub> | B <sub>2</sub> | С | D  | E |
| P160F             | 50             | 10             | 10             | 0 | 25 | ^ |
| P160N / H / D     | 75             | 45             | 25             | 0 | 25 | ^ |
| P250F             | 50             | 40             | 30             | 0 | 25 | ^ |
| P250N / H / D     | 80             | 80             | 30             | 0 | 25 | ^ |
| P400F / N / H / D | 100            | 80             | 60             | 0 | 80 | ٨ |
| P400S             | 120            | 120            | 80             | 0 | 80 | ٨ |
| P630F / N / H / D | 100            | 80             | 60             | 0 | 80 | ٨ |
| P630S             | 120            | 120            | 80             | 0 | 80 | ^ |



\*distance from conductor insulation to downstream MCCB

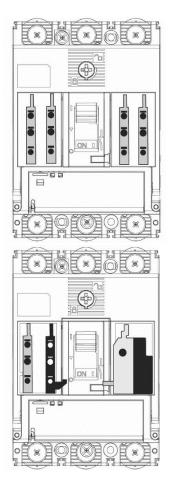
BR1,BR2= Adjacent Isolators / MCCBs

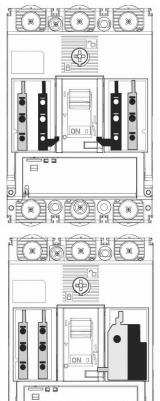




^ Insulate the exposed conductor until it overlaps the moulded case at the terminal, or the terminal cover.

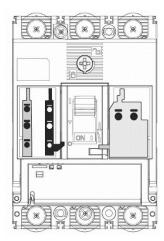


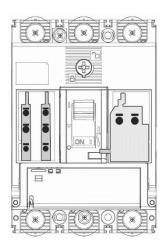




P160, P250 and P400/630 frame sizes have different internal mounting locations for auxiliary contacts, alarm contacts, shunts and, UVTs.

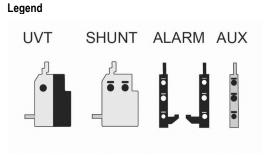
Left-side and right-side mounting locations are independent and accept unique combinations. For example, shunts and UVTs may only be mounted on the right side, whereas auxiliary and alarm contacts may be mounted on either left or right side.

Refer to the following illustrations for each frame size listing the various possible internal accessories combinations.


#### P160 internal accessories combination





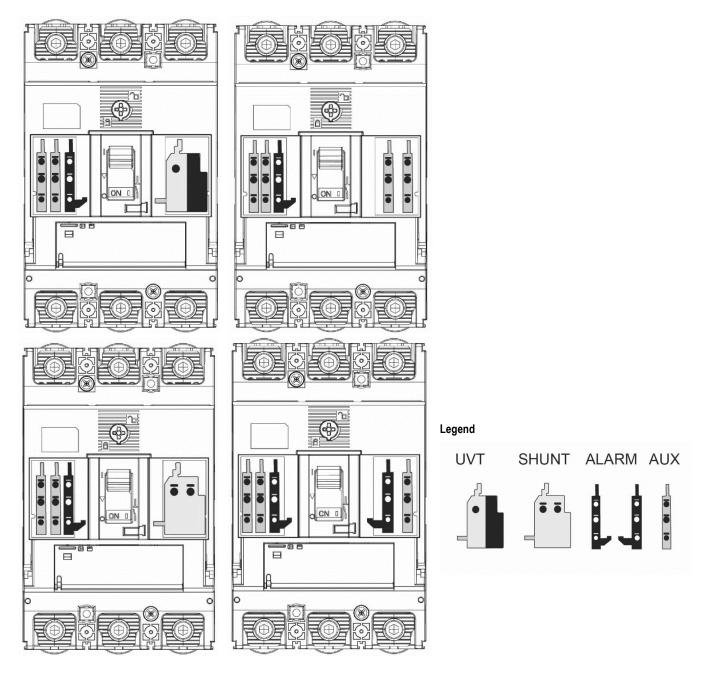


×

0





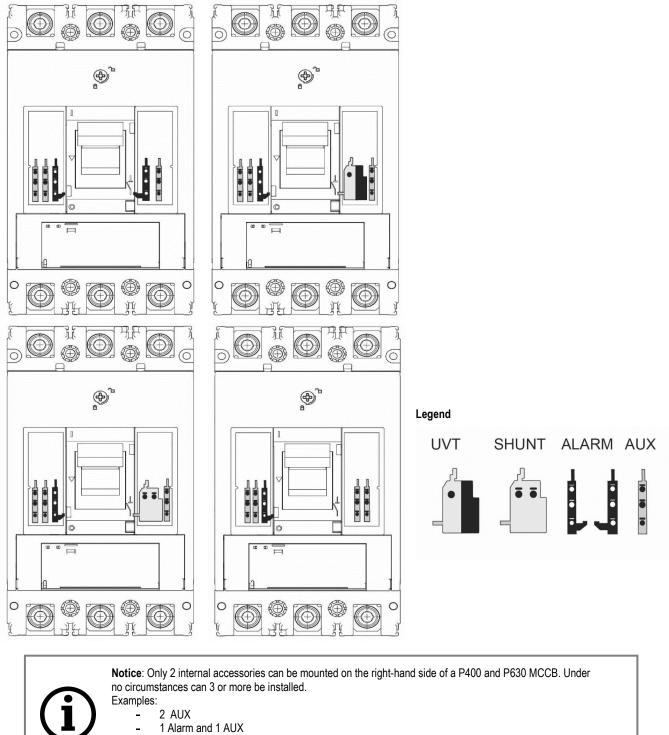
NHP






Exclusive Partner

### Installation


#### P250 internal accessories combination







#### P400/630 internal accessories combination





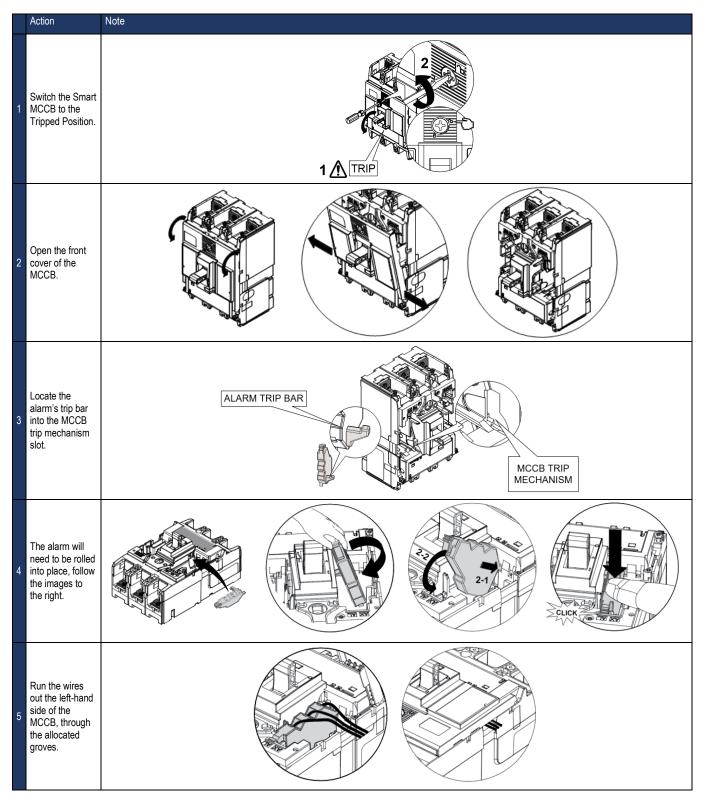
NHP

-

-

1 Shunt and 1 AUX

1 UVT and 1 AUX








The alarm, shunt and UVT have a trip bar that needs to interact with the MCCBs trip mechanism. As such they must be installed in a specific way. Refer to the supplied Installation Instructions for the respective accessories for further detail.

#### Standard Alarm & Auxiliary installation



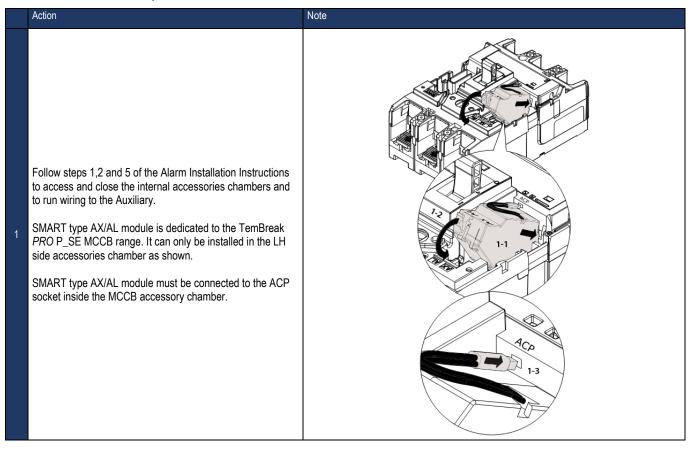


Shunt & UVT installation








**SMART Auxiliary Installation** 



í

Notice: Install auxiliary units last, to ensure the other accessories can be installed correctly.

The method for installing standard and SMART Auxiliary modules are similar to the Alarm contact modules and clip straight in. Refer to the supplied Installation Instructions for the respective accessories for further detail.

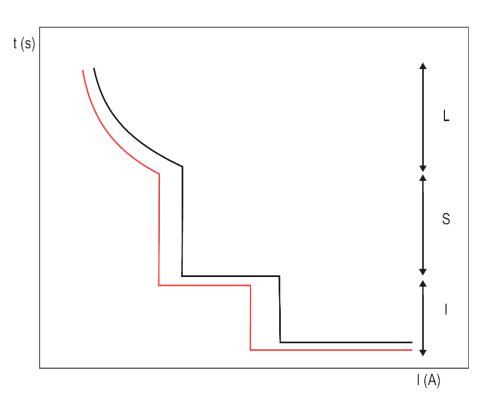




#### Trip Curve

The TemBreak PRO P\_SE electronic Trip Unit protects against overcurrent and short circuit faults for many types of electrical distribution systems. The SE Trip Unit has protective characteristics according to the requirements of the standard AS/NZS IEC 60947.2.

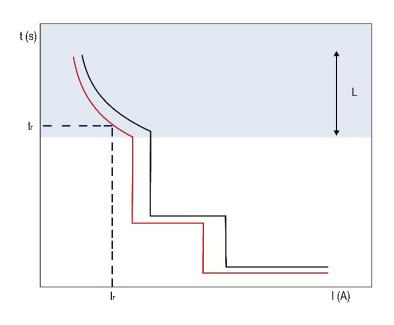
Depending on the protection type, adjusting protection parameters can be made using one or combination of the below methods:


- P\_SE Trip Unit rotary switches and embedded display
- TPED
- TPCM

All protection functions are based on the effective value (RMS) of power, to reduce the effects of current harmonics. The wide range of protection curves adjustments assist in being able to achieve Selectivity combinations of upstream and downstream protection.

#### List of Protection Functions

| Abbreviation          | Description                         | Protection against         | Symbol                          | Definition                                                        |  |  |
|-----------------------|-------------------------------------|----------------------------|---------------------------------|-------------------------------------------------------------------|--|--|
| Long-time delay (LTD) |                                     | Low level current overload | lr                              | Threshold long time protection                                    |  |  |
| L .                   | protection                          | Low level current overload | tr                              | Long Time Delay                                                   |  |  |
|                       |                                     | I <sub>sd</sub>            | Threshold short time protection |                                                                   |  |  |
| S                     | Short-time delay (STD<br>protection | Low level short-circuit    | t <sub>sd</sub>                 | Short Time Delay                                                  |  |  |
|                       |                                     |                            | I²t ON / OFF                    | I <sup>2</sup> t curve on Short delay protection activated or not |  |  |
| I                     | Instantaneous (INST)<br>protection  | - I aroer short-circuit    |                                 | Instantaneous protection threshold                                |  |  |
|                       |                                     |                            | lg                              | Earth Protection Threshold                                        |  |  |
| G                     | Ground/Earth protection             | Ground / Earth fault       | tg                              | Delay protection Earth                                            |  |  |
|                       |                                     |                            | I²t ON / OFF                    | I <sup>2</sup> t curve on Earth protection or not activated       |  |  |


#### **Time-current curve**





#### Long Time Delay Protection (LTD)

The Long Time Delay protection protects against current overloads or surges in power distribution or motor control applications. Long Time Delay protection is an inverse-time protection which includes a thermal image function.



|   | Long Time Delay Settings | Description                                           |
|---|--------------------------|-------------------------------------------------------|
|   | lr                       | Long Time Delay protection threshold (current rating) |
| L | tr                       | Long Time Delay (time delay)                          |

#### Equation

The tr time delay defines the trip time of the long-time delay protection at a 6 x lr. The time to trip at any given current is calculated using the below formula, where k is a constant specific to  $I_r$  and tr settings.

The derivation of the constant k is given by the below formula, where tr is equal to the tr setting, Ir equal to the Ir setting and where I equals 6 x Ir.

|                            | $k = -t_r$                                                                             |
|----------------------------|----------------------------------------------------------------------------------------|
| P Model Long Time Equation | $\kappa = \frac{1}{\log_e \left(1 - \left(\frac{1.125 \times I_r}{I}\right)^2\right)}$ |

#### Example

**P250H3250SE** with the below LTD settings  $I_r = 250A$  tr = 5s

k constant is calculated as below for this example.

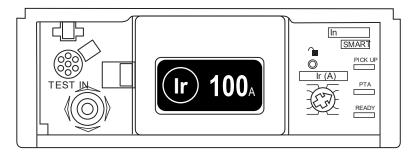
$$k = \frac{-t_r}{\log_e \left(1 - \left(\frac{1.125 \times l_r}{l}\right)^2\right)} = \frac{-5}{\log_e \left(1 - \left(\frac{1.125 \times l_r}{6 \times l_r}\right)^2\right)} = \frac{-5}{\log_e \left(1 - \left(\frac{1.125}{6}\right)^2\right)} = 139.71$$

Now the LTD curve for a P250\_SE with the above LTD settings can be plotted using the below  $t_r = -\left(139.71 \times \log_e\left(1 - \left(\frac{1.125 \times 250}{I}\right)^2\right)\right), where t_r \text{ is the time delay for a given value of } I$ 








#### Adjusting Ir (Current)

The LTD protection trip range is: 1.05...1.20 x I<sub>r</sub> according to standard AS/NZS IEC 60947.2. As above the trip threshold tolerance I<sub>r</sub> for the long-time delay protection is therefore +5% to +20%.

The I<sub>r</sub> trip threshold is firstly set using the I<sub>r</sub> max scale dial on the front of the MCCB, then, if necessary, from the embedded screen display to further adjust in fine increments of 1A. Refer to the Commissioning – LTD Protection Adjustments (I<sub>r</sub> and t<sub>r</sub>) section for further information on using the I<sub>r</sub> max adjustment dial and fine adjustments.

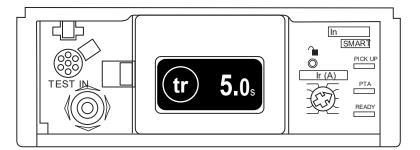
Fine adjustments to I<sub>r</sub> parameters can be made using one or combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM



| Doting (L)               | Dial position          |                        |                        |                        |                        |                        |                        |                        |                         |                         |
|--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|
| Rating (I <sub>n</sub> ) | 1                      | 2                      | 3                      | 4                      | 5                      | 6                      | 7                      | 8                      | 9                       | 10                      |
| 40A                      | l <sub>r</sub> max 16  | l <sub>r</sub> max 18  | l <sub>r</sub> max 20  | l <sub>r</sub> max 22  | l <sub>r</sub> max 25  | l <sub>r</sub> max 28  | l <sub>r</sub> max 32  | l <sub>r</sub> max 34  | l <sub>r1</sub> max 37  | I <sub>r1</sub> max 40  |
| 40A                      | 16                     | 1718                   | 1920                   | 2122                   | 2325                   | 2628                   | 2932                   | 3334                   | 3537                    | 3840                    |
| 100A                     | I <sub>r</sub> max 40  | l <sub>r</sub> max 45  | l <sub>r</sub> max 50  | l <sub>r</sub> max 57  | l <sub>r</sub> max 63  | l <sub>r</sub> max 72  | l <sub>r</sub> max 80  | l <sub>r</sub> max 87  | I <sub>r1</sub> max 93  | In max 100              |
| IUUA                     | 40                     | 4145                   | 4650                   | 5157                   | 5863                   | 6472                   | 7380                   | 8187                   | 8893                    | 94100                   |
| 4604                     | l <sub>r</sub> max 63  | l <sub>r</sub> max 70  | l <sub>r</sub> max 80  | l <sub>r</sub> max 90  | l <sub>r</sub> max 100 | I <sub>r</sub> max 110 | l <sub>r</sub> max 125 | l <sub>r</sub> max 135 | I <sub>r1</sub> max 150 | I <sub>r1</sub> max 160 |
| 160A                     | 63                     | 6470                   | 7180                   | 8190                   | 91100                  | 101110                 | 111125                 | 126135                 | 136150                  | 151160                  |
| 250A                     | l <sub>r</sub> max 100 | l <sub>r</sub> max 110 | l <sub>r</sub> max 125 | l <sub>r</sub> max 140 | l <sub>r</sub> max 160 | l <sub>r</sub> max 180 | l <sub>r</sub> max 200 | l <sub>r</sub> max 225 | I <sub>r1</sub> ma      | x 250                   |
| 200A                     | 100                    | 101110                 | 111125                 | 126140                 | 141160                 | 161180                 | 181200                 | 201225                 | 226                     | 250                     |
| 400A                     | l <sub>r</sub> max 160 | l <sub>r</sub> max 180 | l <sub>r</sub> max 200 | l <sub>r</sub> max 225 | l <sub>r</sub> max 250 | I <sub>r</sub> max 300 | l <sub>r</sub> max 350 | l <sub>r</sub> max 370 | In ma                   | x 400                   |
| 400A                     | 160                    | 161180                 | 181200                 | 201225                 | 226250                 | 251300                 | 301350                 | 351370                 | 371                     | 400                     |
| 630A                     | l <sub>r</sub> max 250 | l <sub>r</sub> max 300 | l <sub>r</sub> max 350 | l <sub>r</sub> max 370 | l <sub>r</sub> max 400 | l <sub>r</sub> max 500 | l <sub>r</sub> max 600 |                        | l <sub>r</sub> max 630  |                         |
| 030A                     | 250                    | 251300                 | 301350                 | 351370                 | 371400                 | 401500                 | 501600                 |                        | 601630                  |                         |

| Ir max scale setting (A)     |
|------------------------------|
| Ir fine adjustment range (A) |






The  $t_r$  time delay defines the trip time of the long-time delay protection for a current of 6 x  $I_r$ .

Adjustments to t<sub>r</sub> parameter can be made using:

- P\_SE Trip Unit embedded display
- TPED
- TPCM



# tr Adjustment Range (seconds) 0.5 1.5 2.5 5 7.5 9 10 12 14 16

Notice: For the following MCCBs the setting of  $I_r$  and  $t_r$  can limit the setting of  $I_{sd}$  for STD protection.

P160\_SE In = 160A, P250\_SE In = 250A

If:  $I_r > 0.9 \text{ x} I_n$  and  $t_r = 16s$   $I_{sd}$  is limited to  $9 \text{ x} I_r$ .



Notice: The trip time tolerance for LTD protection is -20% + 20ms to 0% + 30ms.

Example: For  $t_r = 5$  s and  $I = 6 \times I_r$ , the trip time for long time delay protection will be between 4.02 s and 5.03 s. NI





TemBreak *PRO* electronic Trip Units have a thermal imaging function, which models the active heating and cooling of electrical conductors as current passes through them. The thermal imaging function calculates a thermal value ( $\theta$ ) for the conductors, which trips the MCCB when its thermal threshold ( $\theta_{trip}$ ) is reached. This allows the MCCB to simulate the true thermal state of the conductors more accurately, and better protect against overload conditions between successive operating cycles.

Thermal imaging cannot be disabled in the Trip Unit, however, the P\_SE model can be configured with either a hot or cold start mode, which determines whether the calculated thermal value  $\theta$  is retained if the current drops below the LTD pick-up current threshold (between 1.05...120 x l<sub>r</sub>).

Changes to the Hot–Cold start mode can be made using or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM

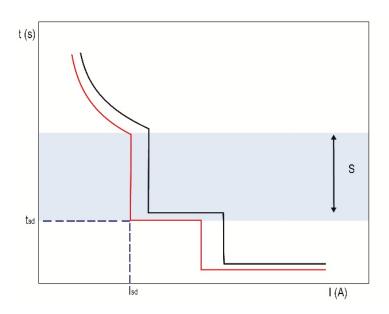
| P_SE Trip Unit embedded display setting      | TPED setting                                                   | TPCM setting                                                                     | Default         |
|----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|
| COLD: Cold start mode<br>HOT: Hot start mode | "Thermal memory"<br>OFF: Cold start mode<br>ON: Hot start mode | Command ID: 201"LTD Start mode"Hex 00 00:Cold start modeHex 00 01:Hot start mode | Cold start mode |

#### Hot start mode

In Hot start mode, the thermal imaging continues to calculate the thermal value ( $\theta_H$ ), even if the current is below the LTD pick-up threshold. As long as the Trip Unit is powered (self-supply or external backup power), the thermal imaging will continue to function. If power is removed from the Trip Unit, thermal imaging will continue to operate for at least 20 minutes or until the calculated thermal value  $\theta_H$  reaches 0.

#### Cold start mode

In Cold start mode, the thermal value ( $\theta_c$ ) is only calculated from when the current reaches and exceeds the LTD pick-up current threshold. If the current drops below the LTD pick-up current threshold, then the thermal value  $\theta_c$  resets to 0.


The below figure illustrates the Trip Unit with thermal imaging in both hot and cold start modes. Where the current (I) drops below the LTD pick-up current threshold (region in grey between 105...120% of I<sub>t</sub>), the Hot mode thermal value  $\theta_H$  continues to be calculated, whereas the Cold mode thermal value  $\theta_C$  resets to 0 each time. In either start mode, the MCCB trips when the respective thermal value threshold  $\theta_{trip}$  is reached. The differences between start modes is made most apparent by the different tripping times after successive operations, where hot mode  $\theta_H$  reaches the tripping threshold  $\theta_{trip}$  earlier, providing added safety and optimum protection of the conductors.





#### Short Time Delay Protection (STD)

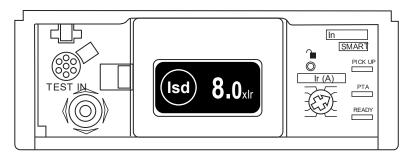
The short time delay protection is designed to protect against low level short-circuit conditions.



|   | Short Time Delay Protection Settings      | Description                                     |
|---|-------------------------------------------|-------------------------------------------------|
|   | I <sub>sd</sub> (x I <sub>r</sub> ) / OFF | Short Time Delay protection threshold / Disable |
| S | t <sub>sd</sub> (ms)                      | Short Time Delay                                |
|   | I²t (ON / OFF)                            | Inverse I <sup>2</sup> t time                   |



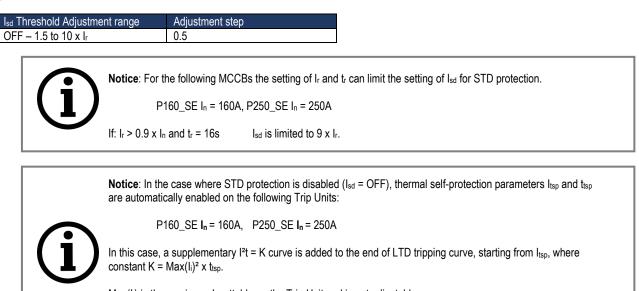



# NHP

#### Adjusting Isd (Current)

The  $I_{sd}$  trip threshold tolerance for STD protection is ±10%.

Depending on the MCCB ampere frame size, adjustments to Isd parameter can be made using one or a combination of the below methods:


- P\_SE Trip Unit rotary dials and embedded display
- TPED
- TPCM



#### P160 and P250

On P160 / P250 ampere frame sizes, there are no  $I_{sd}$  rotary switches, therefore  $I_{sd}$  threshold can only be set from one of or combination of the embedded display, TPED, or TPCM.

Adjustments are made in increments of 0.5 x  $I_{\rm r}$  between 1.5...10 x  $I_{\rm r}.$ 



 $\mbox{Max}(I_i)$  is the maximum  $I_i$  settable on the Trip Unit and is not adjustable.

Refer to Thermal Self-Protection section.





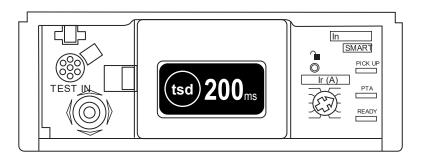
Similarly to the LTD parameter settings, on P400 / P630 ampere frame sizes, the Isd settings are split into maximum and fine adjustment settings.

The Isd threshold is firstly set using the Isd max adjustment dial on the front of the MCCB, then, if necessary, further adjust in fine increments of 0.5 x Ir using the embedded screen display or one of the methods below.

Refer to the Commissioning section for further information on using the max adjustment dial and fine adjustments.

|                                                                         |     |   |      | Dial Pos | sition |      |      |      |       |     |
|-------------------------------------------------------------------------|-----|---|------|----------|--------|------|------|------|-------|-----|
|                                                                         | 1   | 2 | 3    | 4        | 5      | 6    | 7    | 8    | 9     | 10  |
| I <sub>sd</sub> max scale (x I <sub>r</sub> )                           | 1.5 | 2 | 3    | 4        | 5      | 6    | 7    | 8    | 10    | OFF |
| I <sub>sd</sub> fine adjustment range (0.5 x I <sub>r</sub> increments) | 1.5 | 2 | 2.53 | 3.54     | 4.55   | 5.56 | 6.57 | 7.58 | 8.510 |     |

NHP






## Adjusting t<sub>sd</sub> (Time Delay)

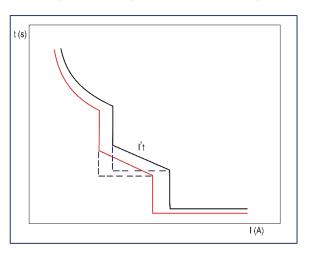
Depending on the MCCB ampere frame size, adjustments to t<sub>sd</sub> parameter can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM



| l₅d Time Delay Adjustment Settings (ms) |     |     |     |     |  |  |
|-----------------------------------------|-----|-----|-----|-----|--|--|
| 50                                      | 100 | 200 | 300 | 400 |  |  |

The trip time tolerance for short time delay protection is as follows:


- For  $t_{sd}$  = 50 ms: ±30 ms
- For  $t_{sd} \ge 100 \text{ ms:} -20 \text{ ms} / +50 \text{ ms}$





## I<sup>2</sup>t function for STD

When enabled, the l<sup>2</sup>t function for STD may be used to improve selectivity with downstream devices by overlaying a supplementary l<sup>2</sup>t = K curve within the STD tripping section, starting from the  $I_{sd}$  threshold setting up to the  $I_i$  threshold setting.



Adjustments to the l<sup>2</sup>t for STD setting can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM

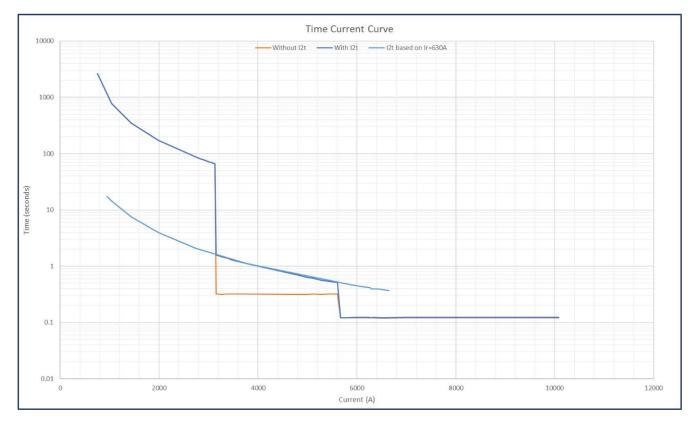
| P_SE Trip Unit embedded display<br>setting                                     | TPED setting                                                                                  | TPCM setting                                                                                                                                      | Default                           |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| OFF: I <sup>2</sup> t for STD disabled<br>ON: I <sup>2</sup> t for STD enabled | "l2t short"<br>Off: l <sup>2</sup> t for STD disabled<br>On: l <sup>2</sup> t for STD enabled | Command ID: 207 "I <sup>2</sup> t for STD setting"<br>Hex 00 00: I <sup>2</sup> t for STD disabled<br>Hex 00 01: I <sup>2</sup> t for STD enabled | I <sup>2</sup> t for STD disabled |

## STD I<sup>2</sup>t Equation

| Short Time I <sup>2</sup> t Equation | $k = I^2 t$ |
|--------------------------------------|-------------|
|                                      |             |

Where the k constant is derived from  $k = (10 \times I_r)^2 \times t_{sd}$ 

The trip time tolerance for short time delay I<sup>2</sup>t protection is the same as the standard tolerance for short time delay protection:

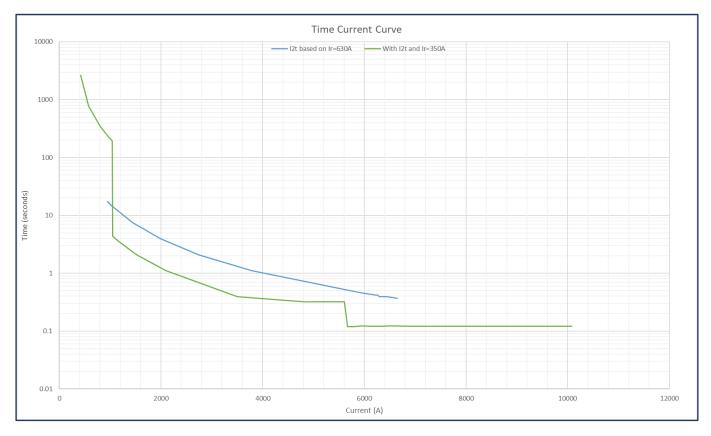

- For  $I_{sd} = \pm 10\%$ .
- For t<sub>sd</sub> = 50 ms: ±30 ms
- For  $t_{sd} \ge 100 \text{ ms}: -20 \text{ ms} / +50 \text{ ms}$





The below graphic illustrates the difference between I<sup>2</sup>t enabled and disabled with a I<sup>2</sup>t curve based on I<sub>r</sub> = 630A for reference.

| Settings        | Full curve<br>with I <sup>2</sup> t disabled | Full curve<br>with l <sup>2</sup> t enabled | I <sup>2</sup> t ONLY<br>base on Ir=630A |
|-----------------|----------------------------------------------|---------------------------------------------|------------------------------------------|
| lr              | 630A                                         | 630A                                        | 630A                                     |
| tr              | 5s                                           | 5s                                          | 5s                                       |
| l <sub>sd</sub> | 5                                            | 5                                           | 1.5                                      |
| t <sub>sd</sub> | 50ms                                         | 50ms                                        | 50ms                                     |
| li              | 9                                            | 9                                           | 11                                       |
| l²t             | Disabled                                     | Enabled                                     | Enabled                                  |



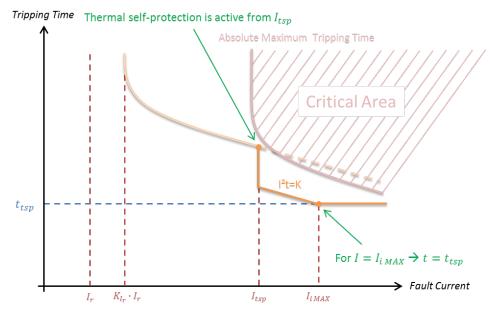





The I<sup>2</sup>t curve is based on the setting of I<sub>r</sub>. The below time current graph illustrates the effect of the I<sup>2</sup>t curves calculated for different I<sub>r</sub> settings.

| Settings        | l <sup>2</sup> t ONLY<br>base on I <sub>r</sub> =630A | Full curve<br>with I <sup>2</sup> t enabled |
|-----------------|-------------------------------------------------------|---------------------------------------------|
| l <sub>r</sub>  | 630A                                                  | 350A                                        |
| tr              | 5s                                                    | 5s                                          |
| l <sub>sd</sub> | 1.5                                                   | 3                                           |
| t <sub>sd</sub> | 50ms                                                  | 50ms                                        |
| li              | 11                                                    | 9                                           |
| l²t             | Enabled                                               | Enabled                                     |






### **Thermal Self-Protection**

### **Thermal Self-Protection**

Thermal self-protection is enabled automatically where STD is disabled. This is to ensure that the continuation of the LTD curve does not intersect with the Critical Area of the MCCB, which could create overheating stresses in the MCCB and cause irreparable damage and/or undesirable operation or failure of the trip-unit.

To achieve this, a supplementary  $I^2t = K$  curve is added to the end of LTD tripping curve, starting from  $I_{tsp}$ , where constant  $K = Max(I_i)^2 x t_{tsp}$ . Max(I<sub>i</sub>) is the maximum I<sub>i</sub> settable on the Trip Unit and is not adjustable.



Thermal self-protection is only on the following MCCBs. When activated, Itsp and ttsp values are specified as follows:

| MCCB              | I <sub>tsp</sub> x I <sub>r</sub> | t <sub>tsp</sub> (seconds) |
|-------------------|-----------------------------------|----------------------------|
| P160_SE In = 160A | 8                                 | 2                          |
| P250_SE In = 250A | 8                                 | 2                          |



**Notice**: Thermal self-protection is applied to all phases where LTD protection is enabled. In the case of 4P MCCBs, Thermal self-protection is also applied to the neutral pole (irrespective of the N Coefficient parameter) provided that Neutral Protection (NP) is enabled. Refer to <u>Neutral Protection</u> section.



**Notice**: LTD thermal image value  $\theta$  is only affected during a trip event where it is temporarily forced to a value over 100%.





**Thermal Self-Protection** 

#### Thermal Self-Protection I<sup>2</sup>t Equation

Thermal Self-Protection I<sup>2</sup>t Equation $k = I^2 t$ 

Where the k constant is derived from

 $k = (I_{i \text{ max setting}})^2 \times t_{tsp}$ , Where I<sub>i</sub> is the maximum setting I<sub>i</sub> can be set to, not adjustable. Refer to Instantaneous Protection (INST)

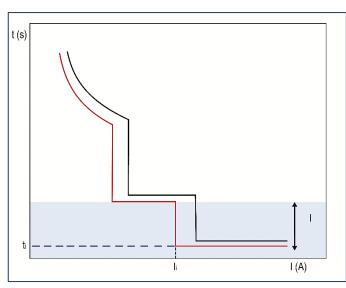
The trip time tolerance for Thermal Self-Protection protection as follows:

- I<sub>tsp</sub> = ±10%
- t<sub>tsp</sub> = ±10%

Example k Constant Calculational P160 I\_i can be set to maximum setting 11 x I\_n

 $k = (I_{i \text{ maxsetting}})^2 \times t_{tsp} = (11 \times I_n)^2 \times 2 = (11 \times 160)^2 \times 2 = 6,195,200$ 

P250  $I_i\,\text{can}$  be set to maximum setting 11 x  $I_n$ 

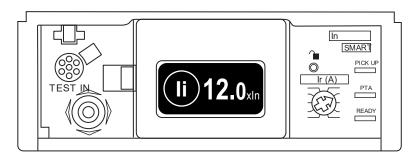

 $k = (I_{i \text{ maxsetting}})^2 \times t_{tsp} = (11 \times I_n)^2 \times 2 = (11 \times 250)^2 \times 2 = 15,125,000$ 





## Instantaneous Protection (INST)

Instantaneous protection is designed to protect against high current short circuits. This protection is independent of time and is set as a multiple of the rated current  $I_n$ .




|   | Instantaneous Protection Settings | Description                        |
|---|-----------------------------------|------------------------------------|
| I | li (X ln)                         | Instantaneous protection threshold |

## Adjusting I<sub>i</sub> (Current)

Adjustments to I<sub>i</sub> trip threshold can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
  - TPED
  - TPCM



| Rating In (A)           | I <sub>i</sub> Adjustment Settings (x I <sub>n</sub> )<br>0.5 x I <sub>n</sub> increments |
|-------------------------|-------------------------------------------------------------------------------------------|
| 40                      | 315                                                                                       |
| 100                     | 515                                                                                       |
| 160                     | 311                                                                                       |
| 250                     | 511                                                                                       |
| 250 (P400 Ampere Frame) | 312                                                                                       |
| 400                     | 512                                                                                       |
| 630                     | 311                                                                                       |

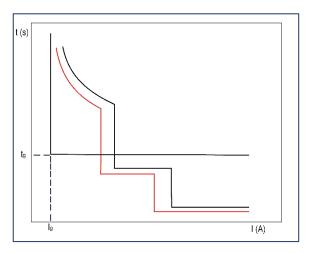
The instantaneous protection has no adjustable time delay.



### Tolerances



Notice: The following tolerances for instantaneous protection reflect the Trip Unit calculations within the li setting


- The  $I_i$  trip threshold tolerance for instantaneous protection is ±15%. • •
  - The non-trip time is 10 ms with a maximum cut-out time is 50 ms

NHP



## Ground/Earth Fault Protection (GF)

Ground Fault protection is protection against high strength insulation / earth faults. Ground fault is available with 3P and 4P P\_SE MCCBs as standard.




|   | Ground Fault Protection Settings | Description                            |
|---|----------------------------------|----------------------------------------|
|   | lg (x ln)                        | Ground fault current trip threshold    |
| G | t <sub>g</sub> (ms)              | Ground fault time delay                |
|   | I²tg (ON / OFF)                  | Inverse time I <sup>2</sup> t function |

## Adjusting Ig (Current)

The I<sub>g</sub> trip threshold tolerance for ground fault protection is  $\pm 10\%$ . When the I<sub>g</sub> threshold is OFF, ground fault protection is deactivated.

Adjustments to I<sub>9</sub> trip threshold can be made using one or a combination of the below methods:

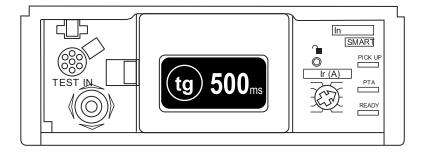
- P\_SE Trip Unit embedded display
- TPED
- TPCM



| Rating I <sub>n</sub> (A) | Ig Trip Threshold Adjustment Settings (x Iո)<br>0.05 x I₀ increments |
|---------------------------|----------------------------------------------------------------------|
| 40                        | 0.41.0 – OFF                                                         |
| 100                       |                                                                      |
| 160                       |                                                                      |
| 250                       | 0.21.0 – OFF                                                         |
| 400                       |                                                                      |
| 630                       |                                                                      |



**Notice**: Enabling GF for 3 pole MCCBs on a 4-wire system may result in nuisance tripping in the case of imbalanced loads. It is recommended in this case that GF should be disabled.




## Adjusting tg (Time Delay)

The trip time tolerance for ground protection is: For  $t_g$  = 50 ms: ±30 ms For  $t_g$  ≥ 100 ms: -20 ms / +50 ms

Adjustments to t<sub>9</sub> time delay can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM



| 50 100 200 300 400 500 | ta Time Delay Adjustment Range (ms) |     |     |     |     |     |  |
|------------------------|-------------------------------------|-----|-----|-----|-----|-----|--|
|                        | 50                                  | 100 | 200 | 300 | 400 | 500 |  |

## I<sup>2</sup>t function for GF

When enabled, the I<sup>2</sup>t function for GF may be used to improve selectivity of ground faults with downstream devices by overlaying a supplementary I<sup>2</sup>t = K curve within the GF time current curve, starting from the I<sub>g</sub> threshold setting up to the I<sub>n</sub> threshold setting.



Adjustments to the I<sup>2</sup>t for GF setting can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
  - TPED
  - TPCM

| P_SE Trip Unit embedded display<br>setting                                   | TPED setting                                                                                 | TPCM setting                                                                                                                                   | Default             |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| OFF: I <sup>2</sup> t for GF disabled<br>ON: I <sup>2</sup> t for GF enabled | "l2t ground"<br>Off: l <sup>2</sup> t for GF disabled<br>On: l <sup>2</sup> t for GF enabled | Command ID: 213 "I <sup>2</sup> t for GF setting"<br>Hex 00 00: I <sup>2</sup> t for GF disabled<br>Hex 00 01: I <sup>2</sup> t for GF enabled | l²t for GF disabled |



## GF I<sup>2</sup>t Equation

| Ground Fault I <sup>2</sup> t Equation | $k = I^2 t$ |
|----------------------------------------|-------------|

Where the k constant is derived from  $k = (1 \ \times I_n)^2 \ \times \ t_g$ 

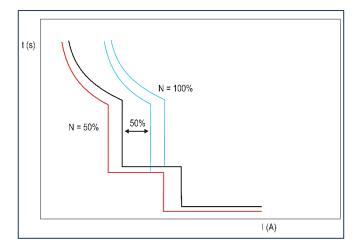
The trip time tolerance for ground fault I<sup>2</sup>t protection is the same as the standard tolerance for ground fault protection:

- For  $I_g = \pm 10\%$ .
- For  $t_g = 50 \text{ ms}: \pm 30 \text{ ms}$
- For  $t_g \ge 100 \text{ ms:} -20 \text{ ms} / +50 \text{ ms}$





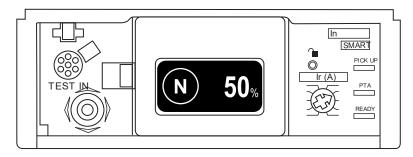



## **Neutral Protection (NP)**

Neutral protection is available with 4P P\_SE MCCBs as standard. It is particularly useful when the cross-section of the neutral conductor is reduced in relation to the phase conductors.

Neutral protection is based off the standard LTD and STD protection parameter of the main phases. The  $I_r$  and  $I_{sd}$  parameters for the Neutral pole are adjusted according to the set Neutral Coefficient percentage. For example, If the Neutral conductor is sized at 50% of the main phases, and the N Coefficient Adjustment parameter is set to 50%, then  $I_r$  and  $I_{sd}$  of the Neutral pole will be 50% of  $I_r$  and  $I_{sd}$  of main phase poles.

The time delays for the Neutral pole remain identical to the  $t_r$  and  $t_{sd}$  time delay adjustment values for the main phases and cannot be independently changed.


INST protection of the Neutral pole is not affected by the N Coefficient adjustment setting and is identical to the li trip threshold of the main phases.



#### Adjusting Ir and Isd for Neutral Protection (Current)

Adjustments to Ir and Isd for the Neutral pole are made by adjuring the N Coefficient setting, which can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM



| N Coefficient Adjustment Settings (%) | Parameters Impacted                                                                           |
|---------------------------------------|-----------------------------------------------------------------------------------------------|
| 50 – 100 – OFF                        | The coefficient is applied to the adjustment value of the phase $I_r$ and $I_{sd}$ thresholds |



**Notice**: If the  $l^2t$  function for STD is enabled,  $l^2t$  will also be included in the Neutral Protection curve as calculated from the Neutral pole  $l_r$  parameter.



#### Zone Selective Interlocking Function (ZSI)



**WARNING:** The ZSI function is supplementary to time selectivity (t<sub>sd</sub> and t<sub>g</sub> time delay). Under no circumstances shall it be used to replace normal STD and/or GF protection.

Zone interlocking is a high-speed signalling method applied between multiple combinations of MCCBs and ACBs to improve the level of protection in a low voltage power distribution system.

A ZSI signalling cable is connected between the downstream and upstream protective devices, permitting the circuit breakers to signal at high speed to each other to determine whether either circuit breaker has detected a short-time (Isd) or ground-fault (Ig) event and to co-ordinate zone selective tripping with minimal time delay.

The circuit breaker closest to the fault will attempt to clear the fault early without relying on varied time delay ( $t_{sd}$  and  $t_g$ ) settings between upstream and downstream circuit breakers to co-ordinate selectivity. This has potential to reduce the overall tripping time of the power distribution network and reduction in incident energy without disruption to other services.

When the Trip Unit detects a fault current in the STD and/or GF protection curve areas (equal or in excess of I<sub>sd</sub> and I<sub>g</sub> respectively) it closes an internal contact on its ZSI output port (ZSI<sub>2</sub>), permitting a signal to propagate along the ZSI signalling cable between upstream and downstream circuit breakers. This is done regardless of whether ZSI is enabled in the Trip Unit.

Only when ZSI is enabled for the required protection type, the Trip Unit will also await a signal from its ZSI input port (ZSI<sub>1</sub>) from the downstream breaker. If there is no signal on the ZSI input ZSI<sub>1</sub> then the Trip Unit determines that the fault has occurred closest to itself. The ZSI function overrides any time delay settings for the respective fault type (STD and GF protection, t<sub>sd</sub> and t<sub>g</sub> respectively) and the circuit breaker will initiate an instantaneous trip and clear the fault as soon as possible (total clearing time may be within 20...50ms).

If a signal is detected on ZSI input ZSI<sub>1</sub> port, then the circuit breaker downstream will initiate the trip. Time delay settings t<sub>sd</sub> and t<sub>g</sub> of the circuit breaker and all other upstream circuit breakers are not overridden and will trip with the configured delays in the event that the downstream circuit breaker is unable to clear the fault in time.



**Notice**: The use of the ZSI signal requires the connection of ZSI Signalling cables to either or both of the required ZSI ports located under the front cover of the P\_SE MCCB. Refer to the <u>Connection Cables</u> section for details on the ZSI cable.





## Zone Selective Interlocking Function (ZSI)

### Setting the ZSI function

The P250SE / P400SE / P630SE MCCB must activate the ZSI protection to acknowledge selectivity per zone and respond according to any signals received on ZSI<sub>1</sub>.

Changes to the settings of each of the ZSI functions can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM

| P_SE Tri<br>display s | p Unit embedded<br>etting                   | TPED setting                                                           | TPCM setting                                                                                                                                      | Default              |
|-----------------------|---------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| OFF:<br>ON:           | ZSI for STD disabled<br>ZSI for STD enabled | "ZSI – Short"<br>Off: ZSI for STD disabled<br>On: ZSI for STD enabled  | Command ID: 208"Zone interlocking (ZSI) for STD"Hex 00 00:ZSI for STD disabledHex 00 01:ZSI for STD enabled                                       | ZSI for STD disabled |
| OFF:<br>ON:           | ZSI for GF disabled<br>ZSI for GF enabled   | "ZSI – Ground"<br>Off: ZSI for STD disabled<br>On: ZSI for STD enabled | Command ID: 214       "Zone interlocking (ZSI) for GF"         Hex 00 00:       ZSI for STD disabled         Hex 00 01:       ZSI for STD enabled | ZSI for GF disabled  |

The P160SE MCCB is mainly designed to protect the feed circuit and thus does not require a ZSI signal from a downstream circuit breaker to be acknowledged, therefore it does not have a ZSI input (ZSI<sub>1</sub>) does not feature any ZSI configurability. It is equipped with a ZSI output (ZSI<sub>2</sub>) to connect an upstream circuit breaker, still produce the ZSI signal on ZSI2 when a short-time or ground-fault event is detected.

| ZSI Port                  | P160         | P250         | P400         | P630         |
|---------------------------|--------------|--------------|--------------|--------------|
| ZSI1 (Input)              | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| ZSI <sub>2</sub> (Output) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |



**Notice**: If the ZSI function is not in use, it is important to ensure that ZSI function settings on applicable upstream MCCBs remain disabled. If the ZSI function is left enabled without a ZSI<sub>1</sub> input signal, the upstream MCCB, upon fault current detection, will override any intended selectivity settings and attempt an instantaneous trip. This may result in nuisance tripping and disruption of other services.

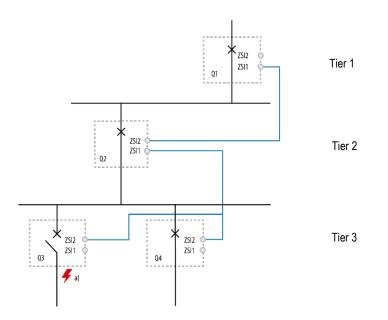
#### Installation consideration

There is no limit to the number of interconnected upstream and downstream circuit breakers using the ZSI signalling interface; however the reliability of the ZSI signal is dependent on the total impedance of the interconnecting cabling. Therefore, the total impedance of the ZSI signalling cables and intermediate wiring and terminations must be considered.

Total impedance is dependent on wire type, length, material, and gauge of all interconnecting wires and termination devices (e.g. terminal blocks and connectors).

The maximum permissible characteristics for the ZSI signalling cable for the total length is as follows:

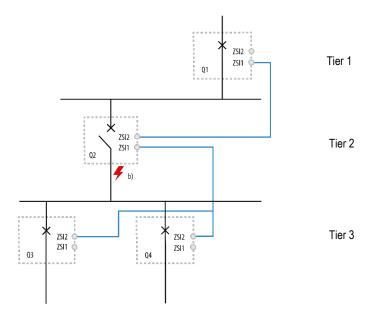
| Specification | Value  |
|---------------|--------|
| Max length    | 1000 m |
| Max impedance | 30 kΩ  |


Physical installation of the ZSI signalling cabling shall be considered. Ensure that the cables are mechanically protected from physical damage.

Ensure appropriate clearances and/or shielding of cables when run in proximity to other high-power conductors to avoid induced voltages and electromagnetic interference on the ZSI signal interface.



## Zone Selective Interlocking Function (ZSI)


## ZSI example A



#### Fault example a):

A short circuit or ground fault occurs downstream of MCCB Q3. All upstream MCCBs Q1, Q2 and Q3 detect the fault at the same time. The ZSI signalling cable between the circuit breakers produces a signal from Q3, which informs Q2 that the downstream circuit breaker has detected the fault. Q2, also detects the same fault, produces its own ZSI signal, which informs Q1 and so on. As Q1 and Q2 have both received the ZSI signal, they maintain their respective time delays so that Q3 can eliminate the fault instantly.

#### **ZSI example B**



#### Fault example b):

A short circuit or ground fault occurs downstream of MCCB Q2. Only upstream MCCBs Q1 and Q2 detect the fault. As per example a), the ZSI signalling cable between the circuit breakers produces a signal from Q2, which informs Q1 that the downstream circuit breaker it has detected the fault. Q1 then maintains its time delays whilst Q2 overrides its pre-set time delays to eliminate the fault instantly, thus reducing the overall clearance time of the fault whilst maintaining selectivity.

NHE



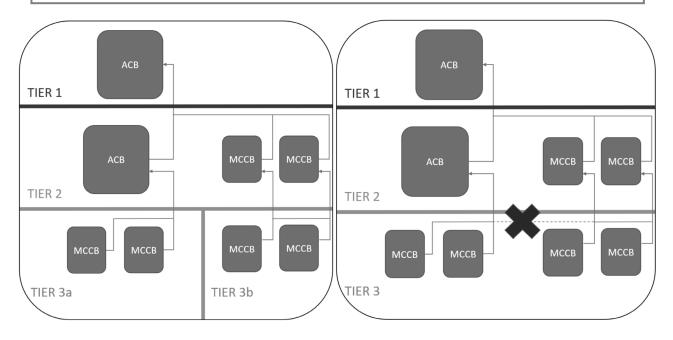


### Zone Selective Interlocking Function (ZSI)

#### Zone Interlocking with TemPower 2 ACBs

With TemPower 2 ACBs ZSI is available as a custom feature and is designed differently to P\_SE ZSI. With these differences it is still possible to zone interlock TemPower 2 with TemBreak PRO P\_SE, there are just a few considerations that need to be respected.




Notice: For TemPower 2 ACB's, ZSI function is a custom, factory installed feature. The instructions for wiring ZSI from ACB to ACB can be found in the ACB Installation Manual & User Manual.

#### **Configuration Restrictions**

The ZSI signal is generated by the upstream device, which monitors feedback from the downstream device to determine if the fault is located further downstream. This means that the ZSI scheme cannot be connected in parallel in the downstream tier when fed by different types of upstream device.



**Notice**: "Different types" refers to ACB ZSI and P\_SE ZSI. Once a tier has multiple types of devices the downstream devices can only be connected to either the parallel upstream ACBs or the parallel upstream MCCBs, but not both.





### Zone Selective Interlocking Function (ZSI)

#### Zone Interlocking with TemPower 2 ACBs

#### Wiring Requirements

There is no limit to the number of interconnected upstream and downstream circuit breakers using the ZSI signalling interface; however, the reliability of the ZSI signal is dependent on the total impedance of the interconnecting cables. Therefore, the total impedance of the ZSI signalling cables and intermediate wiring and terminations must be considered.

Total impedance is dependent on wire type, length, material, and gauge of all interconnecting wires and termination devices (e.g., terminal blocks and connectors).

The maximum permissible characteristics for the ZSI signalling cable for the total length is as follows: MCCBs as the Upstream Device

| Specification          | Value           |
|------------------------|-----------------|
| Max length             | 1000 m          |
| Max impedance          | 30 kΩ           |
| Recommended Cable Type | Shielded 3-core |

These specifications relate to cable extensions made after the after the 1.2m ZSI cable (TPPHQTT150H).

#### ACB as the Upstream Device

| Specification          | Value                                           |
|------------------------|-------------------------------------------------|
| Max length             | 300 m                                           |
| Max impedance          | 100 Ω                                           |
| Recommended Cable Type | Shielded 2-core / Shielded 4-core (with GF ZSI) |

#### See <u>Annex G</u>, or wiring diagrams of ZSI.



**Notice**: If the total impedance of the interconnecting cables is greater than specified, upon fault current detection, the upstream device may override any intended selectivity settings and attempt an instantaneous ZSI trip. This may result in nuisance tripping and disruption of other services.



WARNING: Physical installation of the ZSI signalling cabling shall be considered.

- Ensure that the cables are mechanically protected from physical damage.
  - Ensure appropriate clearances and/or shielding of cables when run in proximity to other high-power conductors to avoid induced voltages and electromagnetic interference on the ZSI signal interface.



**Notice**: When "type" of upstream device is of ACB type, regardless of a mix of ACB's and MCCBs downstream, the total length of all wires in the ZSI network should not exceed 300m and 100 $\Omega$ . The 1000m and 30k $\Omega$  limit applies when the upstream device is of MCCB ZSI "type" only.





## Zone Selective Interlocking Function (ZSI)

#### Zone Interlocking with TemPower 2 ACBs

#### **Power Requirements**

For continuous ZSI operation, 24VDC should be supplied to the P\_SE Trip Unit externally. While ZSI signalling can work without external 24VDC supply via the CIP port on P\_SE MCCB's, it relies on the MCCB contacts being closed and conducting sufficient current to provide the minimum requirements for self-power. See <u>Self-power requirements</u>.



**Notice**: If external 24VDC supply is not supplied to the P\_SE this could lead to nuisance tripping of upstream device when the downstream device does not satisfy the self-powered requirements.

TemPower 2 must have external 24VDC supplied for ZSI to function correctly and it must be the same 24VDC supply for all ACBs in the scheme. Where TemPower 2 ZSI differs from TemBreak PRO is that the 24VDC supply is used as the signal for the upstream device. This is still sent via the downstream device much like TemBreak PRO however, the signal is applied differently. Due to this difference the upstream device must be of the same "type".



Notice: 24VDC Power Supply Required for all devices (ACBs and MCCBs)

- Required to be a single supply for all ACBs in the ZSI scheme
- Not Required to be a single supply for MCCBs in the ZSI scheme





## **Overview of Measurements**

The P\_SE Trip Unit measures and makes visible detailed real-time and historic measurements. Visibility of each measurement type is dependent on the interface used to interrogate the Trip Unit and can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM

| Measurements                       |                                                                                                                                                                                                                  | P_SE Trip Unit<br>Embedded Display | TPED         | TPCM         |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|--------------|
| Current                            | Designator / Description                                                                                                                                                                                         |                                    |              |              |
| Phase and neutral                  | 1. 12. 13: IN                                                                                                                                                                                                    | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Arithmetic mean                    | $I_{avg} = \frac{I_1 + I_2 + I_3}{3}$                                                                                                                                                                            | -                                  | $\checkmark$ | $\checkmark$ |
| Instantaneous maximum              | I <sub>max</sub> of I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub> , I <sub>N</sub>                                                                                                                            | _                                  | $\checkmark$ | $\checkmark$ |
| Instantaneous minimum              | I <sub>min</sub> of I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub>                                                                                                                                             | -                                  | $\checkmark$ | $\checkmark$ |
| Ground / Earth                     | lg                                                                                                                                                                                                               | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Imbalance per phase                | I1 Unb, I2 Unb, I3 Unb; IN Unb<br>with respect to lavg                                                                                                                                                           | -                                  | $\checkmark$ | $\checkmark$ |
| Maximum instantaneous Imbalance    | Imax Unb Of I1 Unb, I2 Unb, I3 Unb, IN Unb                                                                                                                                                                       | —                                  | $\checkmark$ | $\checkmark$ |
| Maximum since last reset           | Max. of each I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub> ; I <sub>N</sub> , I <sub>max</sub> , I <sub>min</sub>                                                                                             | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Minimum since last reset           | Min. of each I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub> ; I <sub>N</sub> , I <sub>max</sub> , I <sub>min</sub>                                                                                             | —                                  | —            | $\checkmark$ |
| Maximum Ig since last reset        | Max. of Ig                                                                                                                                                                                                       | —                                  | $\checkmark$ | $\checkmark$ |
| Minimum Ig since last reset        | Min. of Ig                                                                                                                                                                                                       | —                                  | —            | $\checkmark$ |
| Maximum average since last reset   | Max. of I <sub>avg</sub>                                                                                                                                                                                         | —                                  | _            | $\checkmark$ |
| Minimum average since last reset   | Min. of I <sub>avg</sub>                                                                                                                                                                                         | —                                  | —            | $\checkmark$ |
| Maximum Imbalance since last reset | Max. of each I1 Unb, I2 Unb, I3 Unb; IN Unb, Imax Unb                                                                                                                                                            | _                                  | _            | $\checkmark$ |
| Minimum Imbalance since last reset | Min. of each $I_{1\ Unb},\ I_{2\ Unb},\ I_{3\ Unb};\ I_{N\ Unb},\ I_{max\ Unb}$                                                                                                                                  | _                                  | _            | $\checkmark$ |
| Voltage                            | Designator / Description                                                                                                                                                                                         |                                    |              |              |
| Phase-phase                        | U <sub>12</sub> , U <sub>23</sub> , U <sub>31</sub>                                                                                                                                                              | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Phase to neutral                   | V1N, V2N, V3N                                                                                                                                                                                                    | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Ph-Ph arithmetic mean              | $U_{avg} = \frac{U_{12} + U_{23} + U_{31}}{3}$                                                                                                                                                                   | _                                  | $\checkmark$ | $\checkmark$ |
| Ph-N arithmetic mean               | $V_{avg} = \frac{3}{V_{1N} + V_{2N} + V_{3N}}{3}$                                                                                                                                                                | -                                  | $\checkmark$ | $\checkmark$ |
| Instantaneous maximum              | $U_{max}$ of U <sub>12</sub> , U <sub>23</sub> , U <sub>31</sub><br>$V_{max}$ of V <sub>1N</sub> , V <sub>2N</sub> , V <sub>3N</sub>                                                                             | -                                  | $\checkmark$ | $\checkmark$ |
| Instantaneous minimum              | Umin of U12, U23, U31<br>Vmin of V1N, V2N, V3N                                                                                                                                                                   | -                                  | _            | $\checkmark$ |
| Imbalance per phase                | % U <sub>avg</sub> and % V <sub>avg</sub>                                                                                                                                                                        | -                                  | $\checkmark$ | $\checkmark$ |
| Maximum imbalance                  | Umax Unb, Vmax Unb                                                                                                                                                                                               | -                                  | $\checkmark$ | $\checkmark$ |
| Maximum since last reset           | Max. of each U <sub>12</sub> , U <sub>23</sub> , U <sub>31</sub> , U <sub>max</sub> , U <sub>min</sub><br>Max. of each V <sub>1N</sub> , V <sub>2N</sub> , V <sub>3N</sub> , V <sub>max</sub> , V <sub>min</sub> | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Minimum since last reset           | Min. of each U <sub>12</sub> , U <sub>23</sub> , U <sub>31</sub> , U <sub>max</sub> , U <sub>min</sub><br>Min. of each V <sub>1N</sub> , V <sub>2N</sub> , V <sub>3N</sub> , V <sub>max</sub> , V <sub>min</sub> | -                                  | _            | $\checkmark$ |
| Maximum average since last reset   | Max. of each U <sub>avg</sub> , V <sub>avg</sub>                                                                                                                                                                 | -                                  | $\checkmark$ | $\checkmark$ |
| Minimum average since last reset   | Min. of each Uavg, Vavg                                                                                                                                                                                          | _                                  | _            | $\checkmark$ |
| Maximum imbalance since last reset | Max. of each U12 Unb, U23 Unb, U31 Unb, Umax Unb<br>Max. of each V1N Unb, V2N Unb, V3N Unb, Vmax Unb                                                                                                             | -                                  | _            | $\checkmark$ |
| Minimum imbalance since last reset | Min. of U12 Unba, U23 Unb, U31 Unb, Umax Unb<br>Min. of V1N Unba, V2N Unb, V3N Unb, Vmax Unb                                                                                                                     | -                                  | _            | $\checkmark$ |
| Network                            | Designator / Description                                                                                                                                                                                         |                                    |              |              |
| Phase rotation (sequence)          | 1-2-3, 1-3-2                                                                                                                                                                                                     | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Frequency                          | Designator / Description                                                                                                                                                                                         |                                    |              |              |
| Frequency                          | f                                                                                                                                                                                                                | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Maximum frequency since last reset | Max. of f                                                                                                                                                                                                        |                                    | _            | $\checkmark$ |
| Minimum frequency since last reset | Min. of f                                                                                                                                                                                                        |                                    | _            | $\checkmark$ |





| Measurements                            |                                                                                                                          | P_SE Trip Unit<br>Embedded Display | TPED         | TPCM         |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|--------------|
| Power                                   | Designator / Description                                                                                                 | Embodada Biopiay                   |              |              |
| Active                                  | P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , P <sub>tot</sub>                                                      | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Reactive                                | Q1, Q2, Q3, Qtot                                                                                                         | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
| Apparent                                | S1, S2, S3, Stot                                                                                                         | _                                  | $\checkmark$ | <br>√        |
| , operent                               | Max. of each P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , P <sub>tot</sub>                                         |                                    |              | -            |
| Maximum since last reset                | Max. of each $Q_1$ , $Q_2$ , $Q_3$ , $Q_{tot}$                                                                           | $\checkmark$                       | $\checkmark$ | $\checkmark$ |
|                                         | Max. of each S <sub>1</sub> , S <sub>2</sub> , S <sub>3</sub> , S <sub>tot</sub>                                         | _                                  | $\checkmark$ | $\checkmark$ |
|                                         | Min. of each P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , P <sub>tot</sub>                                         |                                    | •            | •            |
| Minimum since last reset                | Min. of each $Q_1$ , $Q_2$ , $Q_3$ , $Q_{tot}$                                                                           | _                                  | _            | $\checkmark$ |
|                                         | Min. of each S <sub>1</sub> , S <sub>2</sub> , S <sub>3</sub> , S <sub>tot</sub>                                         |                                    |              |              |
| Quadrant                                | 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> , 4 <sup>th</sup>                                                    | -                                  | $\checkmark$ | $\checkmark$ |
| Power Factor                            | Designator / Description                                                                                                 |                                    |              |              |
| Power Factor                            | PF <sub>1</sub> , PF <sub>2</sub> , PF <sub>3</sub> , PF <sub>tot</sub>                                                  | _                                  | $\checkmark$ | $\checkmark$ |
| Displacement Device Frister             | Gran Gran Gran Gra                                                                                                       | $\checkmark$                       | /            | ,            |
| Displacement Power Factor               | Cos $\phi_1$ , Cos $\phi_2$ , Cos $\phi_3$ , Cos $\phi_{tot}$                                                            | (only Cos (oto)                    | $\checkmark$ | $\checkmark$ |
| Marine and the second                   | Max. of each PF1, PF2, PF3, PFtot                                                                                        |                                    |              | ,            |
| Maximum since last reset                | Max. of each Cosq1, Cosq2, Cosq3, Cosqtot                                                                                | -                                  | _            | $\checkmark$ |
| Minimum sin as lost us at               | Min. of each PF <sub>1</sub> , PF <sub>2</sub> , PF <sub>3</sub> , PF <sub>tot</sub>                                     |                                    |              | ,            |
| Minimum since last reset                | Min. of each Cosq1, Cosq2, Cosq3, Cosqtot                                                                                | _                                  | —            | $\checkmark$ |
| Total Harmonic Distortion               | Designator / Description                                                                                                 |                                    |              |              |
| THD voltage                             | THDu12, THDu23, THDu31                                                                                                   | _                                  | $\checkmark$ | $\checkmark$ |
| TTD Vollage                             | THD <sub>V1N</sub> , THD <sub>V2N</sub> , THD <sub>V3N</sub>                                                             | _                                  | V            | V            |
| THD current                             | THD11, THD12, THD13, THD1max                                                                                             | —                                  | $\checkmark$ | $\checkmark$ |
|                                         | Max. of each THDU12, THDU23, THDU31                                                                                      |                                    |              |              |
| Maximum since last reset                | Max. of each THD <sub>V1N</sub> , THD <sub>V2N</sub> , THD <sub>V3N</sub>                                                | -                                  | —            | $\checkmark$ |
|                                         | Max. of each THD <sub>I1</sub> , THD <sub>I2</sub> , THD <sub>I3</sub> , THD <sub>Imax</sub>                             |                                    |              |              |
|                                         | Min. of each THDu12, THDu23, THDu31                                                                                      |                                    |              | ,            |
| Minimum since last reset                | Min. of each THD <sub>V1N</sub> , THD <sub>V2N</sub> , THD <sub>V3N</sub>                                                | -                                  | _            | $\checkmark$ |
| Eporav                                  | Min. of each THD <sub>I1</sub> , THD <sub>I2</sub> , THD <sub>I3</sub> , THD <sub>Imax</sub><br>Designator / Description |                                    |              |              |
| Energy                                  |                                                                                                                          | 1                                  | /            |              |
| Consumed                                | Ealn, Erln                                                                                                               | $\checkmark$                       | <u></u>      | $\checkmark$ |
| Produced                                | Ea Out, Er Out                                                                                                           | -                                  | $\checkmark$ | $\checkmark$ |
| Absolute total (In + Out)               | E <sub>a Abs</sub> , E <sub>r Abs</sub>                                                                                  | —                                  | —            | $\checkmark$ |
| Signed total (In – Out)                 | Ea, Er                                                                                                                   | -                                  | _            | $\checkmark$ |
| Total apparent                          | Es                                                                                                                       | —                                  | $\checkmark$ | $\checkmark$ |
| Averages Over Interval                  | Designator / Description                                                                                                 |                                    |              |              |
| (Demand Values)                         |                                                                                                                          |                                    |              |              |
| Active, reactive, apparent power        | P1 Dmd, P2 Dmd, P3 Dmd, Ptot Dmd                                                                                         |                                    |              |              |
|                                         | Q1 Dmd, Q2 Dmd, Q3 Dmd, Qtot Dmd                                                                                         | —                                  | $\checkmark$ | $\checkmark$ |
| Maximum nature since the last react     | S1 Dmd, S2 Dmd, S3 Dmd, Stot Dmd                                                                                         |                                    |              |              |
| Maximum power since the last reset      | Max. of each P1 Dmd, P2 Dmd, P3 Dmd, Ptot Dmd<br>Max. of each Q1 Dmd, Q2 Dmd, Q3 Dmd, Qtot Dmd                           |                                    | $\checkmark$ | $\checkmark$ |
|                                         | Max. of each S1 Dmd, S2 Dmd, S3 Dmd, Stot Dmd<br>Max. of each S1 Dmd, S2 Dmd, S3 Dmd, Stot Dmd                           |                                    | v            | v            |
| Current                                 | I1 Dmd, I2 Dmd, I3 Dmd; IN Dmd, Iavg Dmd                                                                                 | _ +                                | _            | $\checkmark$ |
| Maximum current since last reset.       | Max. of each I <sub>1</sub> Dmd max, I <sub>2</sub> Dmd max, I <sub>3</sub> Dmd max, I <sub>N</sub> Dmd                  |                                    |              |              |
|                                         | max                                                                                                                      | -                                  | _            | $\checkmark$ |
| Integration interval sliding, fixed, or | Adjustable from 5 to 60 minutes in increments of                                                                         |                                    |              |              |
| synchronised by Modbus                  | one minute                                                                                                               | -                                  | $\checkmark$ | $\checkmark$ |





### Accuracy of Measurements

The measurement accuracies of the P\_SE Trip Unit complies with the requirements of standard IEC 61557-12 Edition 1:

- Class 0.2 for measuring frequency,
- Class 0.5 for measuring voltages,
- Class 1 for measuring current,
- Class 2 for measuring active energy / power.

The accuracy of each measurement is defined, in accordance with IEC 61557-12 Ed 1, for a supply within the rated ambient temperature range of the MCCB (-25°C...+70°C).

| Variables                                           | Symbols Measurement range for accurac<br>class                                                                                                               |                                                                       | IEC 61557-12 Accuracy<br>Class |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|--|
| RMS and min./max. currents                          | I1, I2, I3, IN, Iavg, Imax, Imin,                                                                                                                            | 0.21.2 x In                                                           | Class 1                        |  |
| Ground / Earth current                              | lg                                                                                                                                                           | 0.2 1.2 x In                                                          | Class 1                        |  |
| Current imbalance                                   | I1 Unb, I2 Unb, I3 Unb, IN Unb, Imax Unb                                                                                                                     | —                                                                     | —                              |  |
| Ph-Ph RMS and min./max. voltages                    | U12, U23, U31, Uavg, Umax, Umin                                                                                                                              | 120690 V                                                              | Class 0.5                      |  |
| Ph-N RMS and min./max. voltages                     | V1N, V2N, V3N, Vavg, Vmax, Vmin                                                                                                                              | 70440V                                                                | Class 0.5                      |  |
| Voltage imbalance                                   | U12 Unb, U23 Unb, U31 Unb, Umax Unb,<br>V1N Unb, V2N Unb, V3N Unb, Vmax Unb                                                                                  | 0.81.2 x Vn                                                           | -                              |  |
| Frequency                                           | f                                                                                                                                                            | 4565 Hz                                                               | Class 0.2                      |  |
| Power                                               | P1, P2, P3, Ptot<br>Q1, Q2, Q3, Qtot<br>S1, S2, S3, Stot                                                                                                     | 0.051.2 x In                                                          | Class 2                        |  |
| Energy                                              | Ea In, Ea Out, Ea Abs, Ea net<br>Er In, Er Out, Er Abs, Er net<br>Es net                                                                                     | 0.051.2 x In                                                          | Class 2                        |  |
| Average powers over interval<br>(Demand powers)     | P1 Dmd, P2 Dmd, P3 Dmd, Ptot Dmd<br>Q1 Dmd, Q2 Dmd, Q3 Dmd, Qtot Dmd<br>S1 Dmd, S2 Dmd, S3 Dmd, Stot Dmd                                                     | 0.051.2 x In                                                          | -                              |  |
| Average currents over interval<br>(Demand currents) | l1 Dmd, l2 Dmd, l3 Dmd, lN Dmd, lavg Dmd,<br>l1 Dmd max , l2 Dmd max, l3 Dmd max; lN Dmd max                                                                 | 0.21.2 x In                                                           | -                              |  |
| Power factors                                       | PF <sub>1</sub> , PF <sub>2</sub> , PF <sub>3</sub> , PF <sub>tot</sub> ,<br>Cosφ <sub>1</sub> , Cosφ <sub>2</sub> , Cosφ <sub>3</sub> , Cosφ <sub>tot</sub> | Capacitive (current leading) 0.51<br>Inductive (current lagging) 0.81 | -                              |  |
| THD voltage                                         | THDu12, THDu23, THDu31<br>THDv1n, THDv2n, THDv3n                                                                                                             | 020%                                                                  | Class 2                        |  |
| THD current                                         | THD11, THD12, THD13, THD1max                                                                                                                                 | 0200%                                                                 | Class 2                        |  |



### Real-Time and Min./Max. Measurements

The P\_SE Trip Unit records historical maximum and minimum measurement values alongside real-time measurements.

Some historical values may be manually reset, include User and Trip Unit timestamps, and/or are unique to MCCB's with Neutral reference (3Ph+N) or without (3Ph) depending on system topology. The properties of each type of available historic values are indicated in the following table.

For example, the "Maximum since reset of minimum of  $I_1$ ,  $I_2$ ,  $I_3$ " describes the highest  $I_{min}$  value calculated/measured since the last manual reset of historical values. If reset, the existing instantaneous  $I_{min}$  value will become the new maximum of  $I_{min}$  since reset and will be updated accordingly.

| Measurement Value                                            | Designator / Description                                                                            | М            | inimum       | Real-time    | M            | aximum       | 3Ph          | 3Ph+N        |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Current                                                      |                                                                                                     | Value        | Timestamp    | Value        | Value        | Timestamp    |              |              |
|                                                              | l <sub>1</sub>                                                                                      | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| RMS current                                                  | l <sub>2</sub>                                                                                      | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (*I <sub>N</sub> 4P MCCB only)                               | l <sub>3</sub>                                                                                      | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|                                                              | *I <sub>N</sub>                                                                                     | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | √*           |
| Ground / Earth current                                       | lg                                                                                                  | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ | _            | -            | $\checkmark$ |
| Max. RMS current<br>(*I <sub>N</sub> 4P MCCB only)           | I <sub>max</sub> = max. of I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub> , *I <sub>N</sub>       | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | √*           |
| Min. RMS current                                             | I <sub>min</sub> = min. of I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub>                         | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |
| Avg. RMS current                                             | $I_{avg} = \frac{I_1 + I_2 + I_3}{3}$                                                               | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |
|                                                              | l1 Unb                                                                                              | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| Current imbalance                                            | l2 Unb                                                                                              | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| (*I <sub>N Unb</sub> 4P MCCB only)                           | I <sub>3 Unb</sub>                                                                                  | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |
|                                                              | *I <sub>N Unb</sub>                                                                                 | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | -            | -            | √*           |
| Max. current imbalance<br>(*I <sub>N Unb</sub> 4P MCCB only) | Imax Unb = max. of I1 Unb, I2 Unb, I3 Unb, *IN Unb                                                  | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | √*           |
| Voltage                                                      |                                                                                                     |              |              |              |              |              |              |              |
|                                                              | U <sub>12</sub>                                                                                     | $\checkmark$ |
| Ph-Ph RMS voltage                                            | U <sub>23</sub>                                                                                     | $\checkmark$ |
|                                                              | U <sub>31</sub>                                                                                     | $\checkmark$ |
| Max. Ph-Ph RMS voltage                                       | U <sub>max</sub> = max. of U <sub>12</sub> , U <sub>23</sub> , U <sub>31</sub>                      | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| Min. Ph-Ph RMS voltage                                       | $U_{min} = min. of U_{12}, U_{23}, U_{31}$                                                          | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| Avg. Ph-Ph RMS voltage                                       | $U_{avg} = \frac{U_{12} + U_{23} + U_{31}}{3}$                                                      | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
|                                                              | U <sub>12 Unb</sub>                                                                                 | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| Ph-Ph Voltage imbalance                                      | U23 Unb                                                                                             | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
|                                                              | U <sub>31 Unb</sub>                                                                                 | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| Max. Ph-Ph Voltage imbalance                                 | Umax Unb = max. of U12 Unb, U23 Unb, U31 Unb                                                        | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
|                                                              | V <sub>1N</sub>                                                                                     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ |
| Ph-N RMS voltage                                             | V <sub>2N</sub>                                                                                     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ |
|                                                              | V <sub>3N</sub>                                                                                     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ |
| Max. Ph-N RMS voltage                                        | $V_{max}$ = max. of $V_{1N}$ , $V_{2N}$ , $V_{3N}$                                                  | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | _            | $\checkmark$ |
| Min. Ph-N RMS voltage                                        | $\lambda I = a \sin a f \lambda I = \lambda I = \lambda I$                                          | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | _            | $\checkmark$ |
| Avg. Ph-N RMS voltage                                        | $V_{min} = \min. \text{ of } V_{1N}, V_{2N}, V_{3N}$ $V_{avg} = \frac{V_{1N} + V_{2N} + V_{3N}}{3}$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | -            | $\checkmark$ |
|                                                              | V <sub>1N Unb</sub>                                                                                 | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |
| Ph-N Voltage imbalance                                       | V2N Unb                                                                                             | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ |
| -                                                            | V3N Unb                                                                                             | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| Max. Ph-N voltage imbalance                                  | V <sub>max Unb</sub> = max. of V <sub>1N Unb</sub> , V <sub>2N Unb</sub> , V <sub>3N Unb</sub>      | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |





| Measurement Value              | Designator / Description | M            | inimum       | Real-time    | M            | laximum      | 3Ph          | 3Ph+N        |
|--------------------------------|--------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Power                          |                          | Value        | Timestamp    | Value        | Value        | Timestamp    |              |              |
|                                | P <sub>1</sub>           | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | -            | $\checkmark$ |
| Active power                   | P <sub>2</sub>           | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | -            | $\checkmark$ |
|                                | P <sub>3</sub>           | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | -            | $\checkmark$ |
| Total active power             | Ptot                     | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
|                                | Q <sub>1</sub>           | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
| Reactive power                 | Q2                       | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | -            | $\checkmark$ |
|                                | Q <sub>3</sub>           | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
| Total reactive power           | Qtot                     | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |
|                                | S <sub>1</sub>           | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
| Apparent power                 | S <sub>2</sub>           | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
|                                | S <sub>3</sub>           | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
| Total apparent power           | Stot                     | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |
| Power factor                   |                          |              |              |              |              |              |              |              |
|                                | PF1                      | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
| Power factor                   | PF <sub>2</sub>          | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | —            | $\checkmark$ |
|                                | PF <sub>3</sub>          | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
| Total power factor             | PF <sub>tot</sub>        | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |
|                                | Cosq1                    | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | —            | -            | $\checkmark$ |
| Fundamental power factor       | Cos $\phi_2$             | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
|                                | Cosφ <sub>3</sub>        | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | —            | $\checkmark$ |
| Total fundamental power factor | Cosφ <sub>tot</sub>      | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ |
| Total Harmonic Distortion      |                          |              |              |              |              |              |              |              |
|                                | THD <sub>U12</sub>       | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ |
| THD Ph-Ph voltage              | THD <sub>U23</sub>       | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ |
|                                | THD <sub>U31</sub>       | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ |
|                                | THD <sub>V1N</sub>       | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
| THD Ph-N voltage               | THD <sub>V2N</sub>       | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
|                                | THD <sub>V3N</sub>       | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | -            | $\checkmark$ |
|                                | THD <sub>11</sub>        | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| THD current                    | THD <sub>12</sub>        | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ | $\checkmark$ |
|                                | THD <sub>13</sub>        | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ |
| Max. THD current               | THDImax                  | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | $\checkmark$ |
| Frequency                      |                          |              |              |              |              |              |              |              |
| Network Frequency              | f                        | $\checkmark$ |





### **Current and Voltage Imbalances**

The P\_SE Trip Unit calculates in real-time (every second) current and voltage imbalances as expressed as a % in relation to the arithmetic mean (average value)

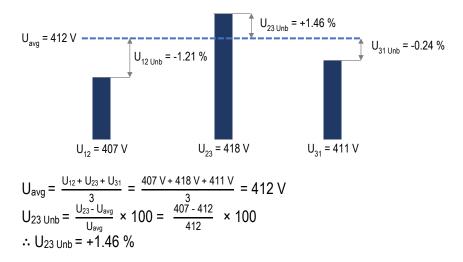
Current imbalance Ip Unb is expressed as a % in relation to the arithmetic mean RMS current Iavg.

$$I_{avg} = \frac{I_1 + I_2 + I_3}{3}$$
  
$$I_{p \text{ Unb}} = \frac{I_{ph} - I_{avg}}{I_{avg}} \times 100 \text{ where } p = phase: 1, 2, 3$$

Example, the calculation of I1 Unb is as follows and per the below illustration:



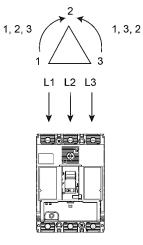
Voltage imbalance Upg Unb is expressed as a % in relation to the arithmetic mean RMS Ph-Ph voltage Uavg and Ph-N voltage Vavg where applicable.


$$U_{avg} = \frac{U_{12} + U_{23} + U_{31}}{3}$$

$$V_{avg} = \frac{V_{1N} + V_{2N} + V_{3N}}{3}$$

$$U_{pb \ Unb} = \frac{U_{ph-ph} - U_{avg}}{U_{avg}} \times 100 \text{ where } pb = ph-ph: 12, 23, 31$$

$$V_{pN \ Unb} = \frac{V_{ph-N} - V_{avg}}{V_{avg}} \times 100 \text{ where } pN = ph-N: 1N, 2N, 3N$$


Example, the calculation of  $U_{23 \text{ Unb}}$  is as follows and per the below illustration:





## System Phase Sequence

This parameter is used to configure the sequence of phases for the network supplying the P\_SE MCCB.



Changes to the system phase sequence setting can be made using one or a combination of the below methods: - P\_SE Trip Unit embedded display

- TPED -
- TPCM -

| P_SE Trip Unit embedded display<br>setting | TPED setting                                    | TPCM setting                                                                                                          | Default |
|--------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|
| <b>1,2.3</b><br>1,3,2: 1,3,2               | "Phase sequence<br>1,2.3: 1,2,3<br>1,3,2: 1,3,2 | Command ID: 101         "System phase sequence"           Hex 00 00:         1,2,3           Hex 00 01:         1,3,2 | 1,2,3   |





The P\_SE Trip Unit calculates the electrical power related parameters in real-time by taking discrete instantaneous measurements of voltage and current at regular sample intervals, with the available data refreshed once every second:

- Active power (P)
- Reactive power (Q)
- Apparent power (S)
- Power Factor (PF)
- Fundamental power factor (Cosφ)
- Power sign
- Power quadrant

### Active, Reactive, Apparent power

Active (P), Reactive (Q) and Apparent (S) Power related parameters vary in availability according to system topology (3Ph or 3Ph+N), which are provided in the following table. Individual power values per phase are only available on MCCB variants with a Neutral reference, whereas total 3-phase power values are available for both system topologies.

| Electrical Parameter         | Symbol                                           | 3Ph          | 3Ph+N        |
|------------------------------|--------------------------------------------------|--------------|--------------|
| Active power per phase       | P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> | -            | $\checkmark$ |
| Apparent power per phase     | S <sub>1</sub> , S <sub>2</sub> , S <sub>3</sub> | 1            | $\checkmark$ |
| Reactive power per phase     | $Q_1, Q_2, Q_3$                                  | -            | $\checkmark$ |
| Total 3-phase active power   | Ptot                                             | $\checkmark$ | $\checkmark$ |
| Total 3-phase reactive power | Q <sub>tot</sub>                                 | $\checkmark$ | $\checkmark$ |
| Total 3-phase apparent power | Stot                                             | $\checkmark$ | $\checkmark$ |



**Notice**: Accuracy and correct polarity of power related measurements are dependent on several calculation, power flow and sign convention settings. Refer to the respective sections for details on these settings:

- Power flow direction and quadrant
- Reactive and apparent power calculation convention
- Power factor sign convention

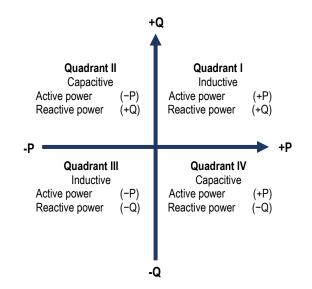






The P\_SE MCCB power supply can be fed in either forward or reverse direction to allow for varied applications and physical installation requirements. Power measurement values are denoted by positive or negative in accordance with the power sign polarity. To ensure accuracy of measurements and other calculated values (such as energy and quadrant), the P\_SE Trip Unit must be configured with the correct power flow direction, which reflects the physical direction of supply.

Positive (+) Forward/Normal Supply Negative (-) Reverse Supply


Changes to the power flow direction can be made using one or a combination of the below methods:

- TPED
- TPCM

| TPED se   | etting                | TPCM setting    |                        | Default               |
|-----------|-----------------------|-----------------|------------------------|-----------------------|
| "P sign o | convention"           | Command ID: 103 | "Power flow direction" |                       |
| Plus:     | Forward/normal supply | Hex 00 00:      | Forward/normal supply  | Forward/normal supply |
| Minus:    | Reverse supply        | Hex 00 01:      | Reverse supply         |                       |

When represented on the power quadrant display, the power flow direction setting ensures that accurate power signs are shown, i.e. positive (+) and negative (-) signs:

- Positive active power (+P) is shown when power and energy is delivered to the load, i.e. the downstream circuit is consuming power.
- Negative active power (-P) is shown when power and energy is received from the load, i.e. the downstream circuit is generating power.
- Reactive power (Q) follows the active power (P) sign when current lags behind voltage, i.e. when the downstream circuit is inductive.
- Reactive power (Q) is opposite the active power (P) sign when current leads ahead of voltage, i.e. when the downstream circuit is capacitive.







#### Reactive and apparent power calculation convention

Total reactive (Q<sub>tot</sub>) and apparent (S<sub>tot</sub>) power for a 3-phase-3-wire system are calculated in the P\_SE Trip Unit using either Arithmetic or Vector convention, which is selectable during configuration.

Changes to the reactive and apparent power calculation convention can be made using one or a combination of the below methods:

- TPED
- TPCM

| TPED setting | J                     | TPCM setting    |                                                       | Default           |
|--------------|-----------------------|-----------------|-------------------------------------------------------|-------------------|
| "Calc. conve | ention"               | Command ID: 104 | "Calculation formula for Reactive and Apparent power" |                   |
| Arithmetic:  | Arithmetic convention | Hex 00 00:      | Arithmetic convention                                 | Vector convention |
| Vector:      | Vector convention     | Hex 00 01:      | Vector convention                                     |                   |

The selection of either convention depends on user or application preference, however, does impact the calculation of other power related measurements which utilize total reactive ( $Q_{tot}$ ) and apparent ( $S_{tot}$ ) power. Differences between the results of the calculation convention used are more prominent in unbalanced 3-phase systems.

Arithmetic convention:

Total apparent power (StotA) is calculated by adding the absolute magnitude of the apparent power (|Sp|) of each phase.

$$S_{totA} = |S_1| + |S_2| + |S_3|$$

Therefore, total reactive power (QtotA) is calculated by using the known total real power (Ptot) and the arithmetic StotA.

$$Q_{totA} = \pm \sqrt{S_{totA}^2 - P_{tot}^2}$$

Vector convention:

Total apparent power (Stotv) is calculated by adding the known total real power (Ptot) and total reactive power (Qtotv).

$$S_{totV} = \sqrt{P_{tot}^2 + Q_{totV}^2}$$

The calculation of total reactive power ( $Q_{totV}$ ) is performed by adding the vector sum of the apparent power for each phase ( $Q_p$ ).

$$Q_{totA} = Q_1 + Q_2 + Q_3$$

Values which are affected by calculation convention setting are as follows:

| Variables                                                                                     | Symbols                                                                 |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Total reactive and apparent power                                                             | Qtot, Stot                                                              |
| Average reactive and apparent power over interval (Demand power)                              | Qtot Dmd, Stot Dmd                                                      |
| Maximum Average reactive and apparent power over interval (Demand power) since the last reset | Max. of each Q <sub>tot Dmd</sub> , S <sub>tot Dmd</sub>                |
| Reactive energy produced, consumed, absolute and signed totals                                | Er In, Er Out, Er Abs, Er                                               |
| Apparent energy                                                                               | Es                                                                      |
| Power factor                                                                                  | PF <sub>1</sub> , PF <sub>2</sub> , PF <sub>3</sub> , PF <sub>tot</sub> |
| Total displacement power factor                                                               | Cosφ <sub>tot</sub>                                                     |



## Power factor (PF and cos q)

The P\_SE Trip Unit calculates in real-time (every second) the total three-phase power factor (PF<sub>tot</sub>) from the ratio of total active power (P<sub>tot</sub>) to total apparent power (S<sub>tot</sub>) in both MCCB system topology (3Ph or 3Ph+N). It also calculates the power factors per phase from the ratios of total active power per phase to apparent power per phase in MCCB variants with Neutral reference:

$$PF_p = \frac{P_p}{S_p}$$
, where p = phase: 1, 2, 3

In the case of purely sinusoidal current (with no harmonic content), the overall power factor (PF) contains only the power factor of the fundamental frequency also referred to as displacement power factor cos $\varphi$ , and thus they are equal. However, in the case of non-linear current consumption (as is typical in rectifiers, switch-mode power supplies, variable speed drives, and modern electric lighting), the true overall power factor PF is affected by the harmonic content of the current waveform (THD), and thus PF and cos $\varphi$  differ. The relationship between PF, cos $\varphi$  is thus dependent on THD:

$$PF_{p} = \frac{\cos \varphi_{p}}{\sqrt{1 + THD_{p}^{2}}}, \text{ where } p = phase: 1, 2, 3$$

The P\_SE Trip Unit provides independent displacement power factor ( $\cos \varphi$ ) values, in addition to PF, which is also calculated in real-time (every second). Individual power factor values per phase are only available on MCCB variants with a Neutral reference, whereas total 3-phase power factor values are available for both system topologies.

| Power Factor                        | Symbol                                      | 3Ph          | 3Ph+N        |
|-------------------------------------|---------------------------------------------|--------------|--------------|
| Power factor per phase              | PF1, PF2, PF3                               |              | $\checkmark$ |
| Total power factor                  | PF <sub>tot</sub>                           | $\checkmark$ | $\checkmark$ |
| Displacement power factor per phase | <b>COS</b> φ1, <b>COS</b> φ2, <b>COS</b> φ3 | -            | $\checkmark$ |
| Total displacement power factor     | COSφtot                                     | $\checkmark$ | $\checkmark$ |





## Power factor sign convention

Power factor values (both PF and  $cos\phi$ ) are represented by the P\_SE Trip Unit as having either a positive (+) or negative (-) sign depending on the sign convention setting. The two sign conventions are dependent on either IEC or IEEE standards.

Changes to the power factor sign convention can be made using one or a combination of the below methods:

- TPED
- TPCM

| TPED setting                                                                                                                                                                                                                                                                                  | TPCM setting                                                     |                                                                                               | Default                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| "PF Sign convention"<br>IEEE: IEEE Standard<br>IEC: IEC Standard                                                                                                                                                                                                                              | Command ID: 105<br>Hex 00 00:<br>Hex 00 01:                      | "Power factor sign convention"<br>IEEE Standard<br>IEC Standard                               | IEEE Standard                                                                            |
| IEEE Convention<br>The sign for PF and cosφ is dependent on both<br>power and reactive power components of the lo<br>to whether the load is capacitive or inductive, in<br>power flow direction:<br>- Inductive load, power factor is negative<br>- Capacitive load, power factor is positive | ad. This can be simplified<br>idependent of the active<br>e (-). | <ul><li>active power flows into a loa</li><li>Power factor is negative (-)</li></ul>          |                                                                                          |
| Capacitive Ir<br>Active power (-) Active p                                                                                                                                                                                                                                                    | e power (+)                                                      | +<br>Quadrant II<br>Capacitive<br>Active power (-)<br>Reactive power (+)<br>PF/cos $\phi$ (-) | Q<br>Quadrant I<br>Inductive<br>Active power (+)<br>Reactive power (+)<br>PF/cosφ (+)    |
| Inductive Ca<br>Active power (-) Active p                                                                                                                                                                                                                                                     | e power (–)                                                      | -P<br>Quadrant III<br>Inductive<br>Active power (-)<br>Reactive power (-)<br>PF/cosφ (-)      | +P<br>Quadrant IV<br>Capacitive<br>Active power (+)<br>Reactive power (-)<br>PF/cosφ (+) |



## **Total Harmonic Distortion (THD)**

The P\_SE Trip Unit calculates the total harmonic distortion levels from the real-time current and voltage measurements (every second). These calculations are performed up to the 31st harmonic. The total harmonic distortion levels may be used to indicate load or power supply quality according to the purity of the current and/or voltage waveform, where low level of wave distortion is ideal.

Harmonic content of the respective waveform (THD) is normally attributed to non-linear load and equipment (as is typical in rectifiers, switch-mode power supplies, variable speed drives, and modern electric lighting), which produces non-sinusoidal current waveforms.

A low level THD is generally acceptable, whereas a high level of unwanted THD may have detrimental effects on equipment connected to the same circuit or supply and may result in increases to current and temperature in neutral conductors and distribution transformers, and core losses and overheating of motors. If not mitigated, high THD levels may result in serious degradation, dangerous overheating and/or risk of malfunction of connected equipment.

Acceptable THD levels are dependent on the application and relative standards for the installation.

 $THD_{l}$  is used to determine the current wave harmonic distortion level.  $THD_{U}$  or  $THD_{V}$  is used to determine the voltage wave harmonic distortion level for Ph-Ph and Ph-N voltages respectively.

| Total Harmonic Distortion | Symbol                                                   | 3Ph          | 3Ph+N        |
|---------------------------|----------------------------------------------------------|--------------|--------------|
| THD phase current         | THD <sub>11</sub> ,THD <sub>12</sub> , THD <sub>13</sub> | $\checkmark$ | $\checkmark$ |
| THD voltage Ph-N          | THDv1n, THDv2n, THDv3n                                   | -            | $\checkmark$ |
| THD Voltage Ph-Ph         | THDu12, THDu23, THDu31                                   | $\checkmark$ | $\checkmark$ |

For heavily distorted waveforms, it is possible for the THD percentage to exceed 100%, as this indicates that a majority of the total RMS current or voltage is produced by harmonic content. The maximum values indicated by the P\_SE Trip Unit are provided in the <u>Range and accuracy</u> section.

### Current (THDI)

The current THD is measured as the percentage of the RMS current of each harmonic above the fundamental frequency (harmonic order > 1) of the current waveform as compared to the RMS current of the fundamental frequency (harmonic order = 1):

$$\mathsf{THD}_{\mathsf{l}_{\mathsf{p}}} = \frac{\sqrt{\mathsf{l}_{\mathsf{ph}_2}^2 + \mathsf{l}_{\mathsf{ph}_3}^2 + \dots + \mathsf{l}_{\mathsf{ph}_{31}}^2}}{\mathsf{l}_{\mathsf{ph}_1}} \times 100$$

Where  $I_{ph_n}$  = effective harmonic component of order n for phase p.

E.g. I<sub>1h1</sub> is the RMS phase 1 current of the fundamental frequency, I<sub>1h2</sub> is the RMS phase 1 current of the 2<sup>nd</sup> harmonic, and so on.

## Voltage (THD, THDu, THDv)

The voltage THD is measured as the percentage of the RMS voltage of each harmonic above the fundamental frequency (harmonic order > 1) of the voltage waveform as compared to the RMS voltage of the fundamental frequency (harmonic order = 1):

$$\mathsf{THD}_{\mathsf{U}_{\mathsf{pg}}} = \frac{\sqrt{\mathsf{U}_{\mathsf{pgh}_2}^2 + \mathsf{U}_{\mathsf{pgh}_3}^2 + \dots + \mathsf{U}_{\mathsf{pgh}_31}^2}}{\mathsf{U}_{\mathsf{pgh}_1}} \times 100$$

Where  $U_{pgh_n}$  = effective harmonic component of order n for the voltage between phases p and g. E.g.  $U_{12h_1}$  is the RMS Ph1-Ph2 voltage of the fundamental frequency,  $U_{12h_2}$  is the RMS Ph1-Ph2 voltage of the 2<sup>nd</sup> harmonic, and so on.





#### Demand Values (averaged values over an interval)

The P\_SE Trip Unit calculates the averaged current and power values by integration over a specified time interval. These are the Demand values or the averaged values over an interval. Demand values are useful in order to create a load profile for the loads supplied by the P\_SE MCCB.

Demand values are distinct and not to be confused with other instantaneous average measurements (e.g. I<sub>avg</sub>, U<sub>avg</sub> etc.), which are given as arithmetic averages of several phases.

The P\_SE Trip Unit calculates an average demand value (G) by adding all the values for G for a time interval (T) and dividing them by the total time in the window interval. The formula is represented by an integral continuous over time, though the Trip Unit does perform this calculation using discrete time and measurement values.

$$G_{average} = \frac{1}{T} \int_0^T G dt$$

Where: T = Time window interval G = Demand value over time interval

For each averaged value (Demand value) period calculated, the maximum value over the time interval is also stored. The maximum values can be reset via the TPED or TPCM.

The exhaustive list of variables calculated according to system topology (3Ph and 3Ph+N) and the display interface are given in the following table:

| Electrical Variable                     | Symbol                                                              | 3Ph          | 3Ph+N          | TPED         | TPCM         |
|-----------------------------------------|---------------------------------------------------------------------|--------------|----------------|--------------|--------------|
| Phase currents                          | l1 Dmd, l2 Dmd, l3 Dmd                                              | $\checkmark$ | $\checkmark$   | _            | $\checkmark$ |
| Neutral current (*4P MCCB only)         | *I <sub>N Dmd</sub>                                                 | —            | √*             | _            | $\checkmark$ |
| Average current                         | lavg Dmd                                                            | $\checkmark$ | $\checkmark$   | -            | $\checkmark$ |
| Active power per phase                  | P1 Dmd, P2 DMD, P3 Dmd                                              | _            | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Total active power                      | Ptot Dmd                                                            | $\checkmark$ | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Reactive power per phase                | Q1 Dmd, Q2 Dmd, Q3 Dmd                                              | —            | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Total reactive power                    | Q <sub>tot Dmd</sub>                                                | $\checkmark$ | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Apparent power per phase                | S1 Dmd, S2 Dmd, S3 Dmd                                              | —            | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Total apparent power                    | Stot Dmd                                                            | $\checkmark$ | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Maximum current phase                   | l1 max Dmd, l2 max Dmd, l3 max Dmd                                  | $\checkmark$ | $\checkmark$   | -            | $\checkmark$ |
| Neutral current maximum (*4P MCCB only) | *I <sub>N max Dmd</sub>                                             | —            | $\checkmark^*$ | -            | $\checkmark$ |
| Average current maximum                 | avg max Dmd                                                         | $\checkmark$ | $\checkmark$   | _            | $\checkmark$ |
| Maximum active power per phase          | P1 max Dmd, P2 max Dmd, P3 max Dmd                                  | —            | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Maximum total active power              | Ptot max Dmd                                                        | $\checkmark$ | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Maximum reactive power per phase        | Q1 max Dmd, Q2 max Dmd, Q3 max Dmd                                  | —            | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Maximum total reactive power            | Qtot max Dmd                                                        | $\checkmark$ | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Maximum apparent power per phase        | $S_{1\text{max}}$ Dmd, $S_{2\text{max}}$ Dmd, $S_{3\text{max}}$ Dmd | _            | $\checkmark$   | $\checkmark$ | $\checkmark$ |
| Maximum total apparent power            | Stot max Dmd                                                        | $\checkmark$ | $\checkmark$   | $\checkmark$ | $\checkmark$ |



**Notice**: Accuracy and correct polarity of power related measurements are dependent on several calculation, power flow and sign convention settings. Refer to the respective sections for details on these settings:

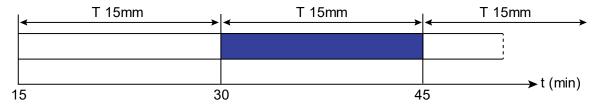
- Power flow direction and quadrant
- Reactive and apparent power calculation convention
- Power factor sign convention



## Demand mode

There are 3 types of time window intervals which are configurable in the Trip Unit:

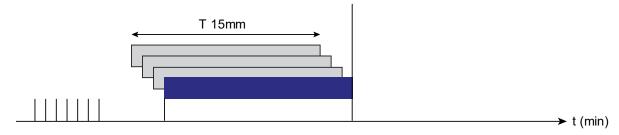
- Fixed window
- Sliding window
- Synchronised window (Sync. Bus)


Changes to the Demand interval type and time can be made using one or a combination of the below methods:

- TPED
- TPCM

| TPED setting | I                             | TPCM setting                 |                               | TPCM setting |              | Default |  |
|--------------|-------------------------------|------------------------------|-------------------------------|--------------|--------------|---------|--|
| "On Demand   | d Mode"                       | Command ID: 106              | "Demand"                      |              |              |         |  |
| Fixed:       | Forward/normal supply         | Address Hex 22 26            | , Mode:                       |              |              |         |  |
| Sliding:     | Reverse supply                | Hex 00 00:                   | Fixed window                  |              |              |         |  |
| Bus sync:    | Synchronised window           | Hex 00 01:                   | Sliding window                | Mode:        | Fixed window |         |  |
| -            | -                             | Hex 00 02:                   | Synchronised window           | Duration:    | 30 min       |         |  |
| "On Demand   | d Duration"                   |                              |                               |              |              |         |  |
| 560min:      | Duration in minutes (560 min) | Address Hex 22 25, Duration: |                               |              |              |         |  |
|              | · · ·                         | Hex 00 0500 3C               | Duration in minutes (560 min) |              |              |         |  |

#### **Fixed window**


The calculation intervals are performed consecutively in separate and discrete time interval (T) blocks with a new demand value calculated at the end of each interval.



The duration of interval T can be configured between 5 and 60 minutes in increments of 1 minute.

### Sliding window

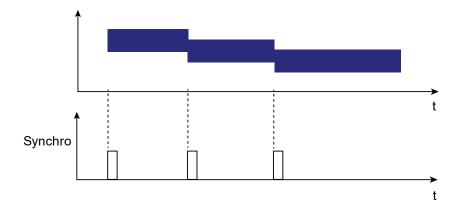
The calculation intervals are performed consecutively within the set time interval (T) with a new demand value produced every minute. The demand value shows the average of the last time interval (T) from the last minute observed.



The duration of interval T can be configured between 5 and 60 minutes in increments of 1 minute.






### Synchronised window

This mode is only compatible with the use of the TPCM, whereby a synchronisation pulse is generated via write Command ID: 132 "Trigger signal of Bus synchronisation Demand mode".

The time interval for the calculation of the demand value is determined by the time between synchronisation pulses. When the first synchronisation pulse is received, the start of the time interval is initialised. For the next received pulse, the last time interval is concluded; the demand value is updated and a new time interval is initialised.

The time interval between two synchronisation pulses must be between 1 and 60 minutes. If the interval exceeds 60 minutes, integration of the measurement stops and the measurements up to the next synchronisation pulse are not considered.

Any time interval (T) setting in the Trip Unit is ignored whilst in Synchronised demand mode, as the time interval is determined as the time between pulses.





#### **Energy Measurements**

The P\_SE Trip Unit provides various energy readings by integrating the instantaneous power over a network period and storing the totalised energy in several counters and incremented once every second.

Active and reactive energy counters provide separate and combined values for produced and consumed energy (i.e. energy flowing through the MCCB in either direction). Absolute counters are unsigned and combine the total energy in either direction regardless of power sign, whereas net counters are signed and will subtract produced energy from consumed.

The partial energy counters can be reset using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM

Separate non-resetable counters are made available for produced and consumed active energy only. These are separate to the partial energy counters as they cannot be reset and are permanently retained in Trip Unit memory.

| Partial energy counter                | Symbol | User reset   |
|---------------------------------------|--------|--------------|
| Active energy consumed                | Ea In  | $\checkmark$ |
| Active energy produced                | Ea Out | $\checkmark$ |
| Reactive energy consumed              | Erln   | $\checkmark$ |
| Active energy produced                | Er Out | $\checkmark$ |
| Absolute active energy (In + Out)     | Ea Abs | $\checkmark$ |
| Absolute reactive energy (In + Out)   | Er Abs | $\checkmark$ |
| Signed total active energy (In – Out) | Ea     | $\checkmark$ |
| Signed reactive energy (In – Out)     | Er     | $\checkmark$ |
| Total apparent energy                 | Es     | $\checkmark$ |

| Total energy counter                   | Symbol    | User reset |
|----------------------------------------|-----------|------------|
| Active energy consumed – non resetable | Ea In NR  | -          |
| Active energy produced – non resetable | Ea Out NR | —          |

**Notice**: Accuracy and correct polarity of all energy related measurements are dependent on several calculation, power flow and sign convention settings. Refer to the respective sections for details on these settings:

- Power flow direction and quadrant
- Reactive and apparent power calculation convention
- Power factor sign convention



### Alarm Types

The P\_SE Trip Unit provides alarming for various types of events based on system status and live monitoring of parameters. There are four types of alarms based on functionality and configurability:

- System alarm: Correspond to predefined events internal to the Trip Unit.
- Pre-Trip alarm (PTA): Provides a warning about the imminent trip risk due to a current overload. It is associated with the PTA output contact.
- Trip alarm: Provide warning about trip events and guide diagnostics towards the cause of the trip.
- Custom alarm: Used to monitor and be alerted to the measurements taken by the SMART Trip Unit.



**Notice**: Custom alarms are not available on the P\_SE Trip Unit embedded display and are only accessible and configurable by using the TPED, or TPCM.

In addition to these alarms, the Optional Alarm Contact (OAC) may be configured to report certain alarms via a physical output contact (OAC cable required). Such alarms which can be assigned to the OAC include system alarms, custom alarms, and PTA. Refer to <u>OAC (Optional Alarm Contact)</u> section for more information.

### **Alarm Indication**

Alarm and Trip Unit status indicators are made visible on the P\_SE Trip Unit via LEDs on the front or notification messages on the embedded display, depending on the alarm/status type as shown in the below table:

| Alarm/Status type               | P_SE Trip Unit<br>display notification | Front LED    | Indication            | Notes                                                                                                                                                                                                                         |
|---------------------------------|----------------------------------------|--------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LTD Pick-up Alarm               | _                                      | $\checkmark$ |                       | OFF:Current < 105% x lrRED Flashing:Current $\geq$ 105% x lrRED Solid:Current $\geq$ 112.5% x lr                                                                                                                              |
| PTA (Pre-Trip Alarm)            | Γ                                      | $\checkmark$ | РТА                   | OFF:Current < PTA thresholdORANGE Flashing:Current ≥ PTA thresholdORANGE Solid:PTA output activated                                                                                                                           |
| Trip Unit Status                | _                                      | $\checkmark$ | READY                 | GREEN Solid: Trip Unit operating normally<br>ORANGE Flashing: Internal Trip Unit fault<br>detected                                                                                                                            |
| OAC (Optional Alarm<br>Contact) | $\checkmark$                           | _            |                       | Alarm programmed to OAC activated                                                                                                                                                                                             |
| Trip Alarm                      | $\checkmark$                           | _            | LTD<br>2999A<br>PH. 1 | Indicates the type of trip and its cause:<br>- LTD: Long time delay protection<br>- STD: Short time delay protection<br>- INST: Instantaneous protection<br>- GROUND: Ground/Earth fault protection<br>TEST: Test mode by MIP |
| Trip Unit Temperature Alarm     | $\checkmark$                           | _            |                       | Internal Trip Unit temperature > 105°C                                                                                                                                                                                        |



### **Priority Level**

Each trip and custom alarm is associated with it a priority level, which determines how each alarm is displayed and logged.



**Notice**: Custom alarms are only visible using the TPED or TPCM, however, the P\_SE Trip Unit will still monitor and log any prior configured alarms without either TPED or TPCM connected.

Upon reconnection to a TPED or TPCM, the custom alarm trip history log will be populated and can be accessed.

Configuration of alarm priority levels are made using one or a combination of the below methods:

- TPED
- TPCM

Refer to the respective device's User Manual for detailed instructions on how to configure the respective alarms and priority levels.

The characteristics of each priority are provided in the below table:

| Priority | Active alarm list | Alarm history log | TPED<br>Alarm LED | TPED<br>Alarm notification icon | TPED<br>Alarm pop-up |
|----------|-------------------|-------------------|-------------------|---------------------------------|----------------------|
| None     | $\checkmark$      | -                 | -                 | -                               | _                    |
| Low      | $\checkmark$      | $\checkmark$      | -                 | -                               | -                    |
| Medium   | $\checkmark$      | $\checkmark$      | $\checkmark$      | $\checkmark$                    | -                    |
| High     | $\checkmark$      | $\checkmark$      | $\checkmark$      | $\checkmark$                    | $\checkmark$         |
| riigii   | V                 | V                 | V                 | V                               | V                    |

- Priority None: Active alarms will not produce any notification, and will not be stored in the alarm history log of either TPED or TPCM. The respective alarm status will still display as active or inactive in the custom alarm configuration list of the TPED, and the Custom Alarms Status register of the TPCM.
- Priority Low: Active alarms behave in the same way as Priority None alarms, but in addition will be logged in the alarm history log which is accessible on both TPED and TPCM. Both alarm activation and deactivation events will be logged (as applicable), complete with the details of the alarm type and event time.
- Priority Medium: Active alarms behave in the same way as Priority Low alarms, but in addition will produce a notification on the TPED in the form of a flashing red alarm LED on the front, and an alarm notification icon on the lower right of the display. Pressing the "Fn" key under the alarm icon will open a pop-up display to view the details of active alarms and acknowledge deactivated alarms.
- Priority High: Active alarms behave in the same way as Priority Medium alarms, but in addition will automatically produce a pop-up notification on the TPED without requiring the user the press the "Fn" key under the alarm icon.



Notice: PTA, System Alarms and OAC Alarm are always assigned Priority High and cannot be modified.





System alarms are produced as a result of at least one of the following pre-defined events, which are not user configurable:

- Internal Trip Unit error
- Trip Unit temperature alarm
- Disconnection of neutral

| Uni<br>alaı<br>dro         | e P_SE Trip Unit constantly monitors its internal temperature. In the event that the temperature exceeds 105°C, the <i>Trip it temperature alarm</i> is activated and a pop-up appears on the P_SE embedded display and TPED where used. The rm features a lower hysteresis threshold, which keeps the alarm active until the internal temperature of the Trip Unit ops below 100°C.                                                                                                                                                                                                                                                            |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discourse of New York Cont |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| this<br>dar<br>dar<br>moi  | ly available on MCCB's with Neutral reference (3Ph+N). This alarm is activated if the neutral pole is disconnected and if<br>s alarm has been assigned to the OAC output contact. A disconnected neutral in the network supply may produce a<br>ngerous increase in Phase-Neutral voltage in unbalanced 3-phase systems. This sustained overvoltage can result in<br>mage to equipment and insulation and poses a safety risk to personnel. Neutral disconnection detection is based on<br>initoring a threshold Ph-N overvoltage of approximately 275 Vac with a time delay as defined by standard EN 50550 for<br>ated Ph-N voltage of 230 V. |



Notice: Disconnection of Neutral alarm is only indicated by assigning it to the OAC (Optional Alarm Contact), in which case it will display as an OAC alarm. Other system alarms can be assigned to the OAC, however, only one at a time is possible. Refer to <u>OAC (Optional Alarm Contact)</u> section.

These alarms are identified by LEDs or pop-ups depending on the Trip Unit version and display used:

| Alarm/Status type                 | P_SE Trip Unit<br>display notification | Front LED    | Indication | Notes                                                                                              |
|-----------------------------------|----------------------------------------|--------------|------------|----------------------------------------------------------------------------------------------------|
| Internal Trip Unit Error          | _                                      | $\checkmark$ | READY      | GREEN Solid: Trip Unit operating normally<br>ORANGE Flashing: Internal Trip Unit fault<br>detected |
| Trip Unit Temperature             | $\checkmark$                           | -            |            | Internal Trip Unit temperature > 105°C                                                             |
| Disconnection of Neutral<br>(OAC) | $\checkmark$                           | _            |            | Alarm programmed to OAC activated                                                                  |





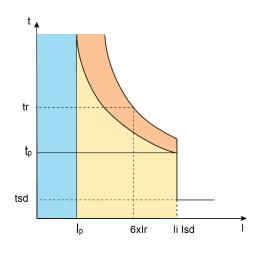
The Pre-Trip Alarm permits monitoring and early warning of overload conditions prior to an actual LTD trip. The PTA setting is defined by two parameters which define the Pre-trip warning and Pre-trip Alarm zones and thus the behaviour of the PTA contact and status LED:

- PTA current threshold I<sub>p</sub>: Threshold expressed as a percentage of I<sub>r</sub> and is adjustable from 60...95%
- PTA time delay tp : Expressed as a percentage of tr and is adjustable from 5...80%

The I<sub>p</sub> current threshold defines the lowest current that could be considered to be within the Pre-trip warning and Pre-trip alarm zones. The t<sub>p</sub> time delay threshold defines the shortest time in which the Pre-trip alarm will activate. The time delay for PTA follows the LTD protection curve and varies with current as shown in the figure below. Lower currents in the Pre-trip zones will activate the alarm with a longer delay than higher currents.

The behaviour of the various pre-trip zones are illustrated in the figure and table below.

If the load current is less than the I<sub>p</sub> current threshold, then this is considered the normal load zone, and the PTA LED and contact are unaffected and remain OFF and OPEN, respectively.


As the load current increases to at or above I<sub>p</sub>, the Pre-trip warning zone is entered, and is indicated by the PTA LED illuminating FLASHING orange. Whilst in the pre-trip warning zone, the load current is monitored and characterised with thermal imaging by the Trip Unit.

If the current remains above I<sub>p</sub> for an extended period of time, the Pre-trip Alarm zone is entered, and is indicated by the PTA LED illuminating SOLID orange, and the PTA contact activating CLOSED. The time required for the Pre-trip Alarm to activate is dependent on the current value and the t<sub>p</sub> parameter set, as this follows the LTD protection curve.



**Notice**: The use of the PTA contact requires the connection of the OAC/PTA cable to the PTA port located on the external left-hand side of the P\_SE MCCB. Refer to the <u>Connection Cables</u> section for details on the OAC/PTA cable.

| Pre-trip zone    | Current I vs. Ip | PTA LED status    | PTA Contact status |
|------------------|------------------|-------------------|--------------------|
| Normal load      | <  p             | OFF<br>READY      | OPEN               |
| Pre-trip Warning | l≥lp             | FLASHING<br>READY | OPEN               |
| Pre-trip Alarm   | l ≥ lp           | SOLID<br>READY    | CLOSED             |







The trip threshold and time delay for the PTA overload pre-alarm can be adjusted. The parameters are defined in relation to the long-time delay Ir and tr parameters.

Changes to the PTA  $I_p$  current threshold and  $t_p$  time delay can be made using one or a combination of the below methods:

- P\_SE Trip Unit embedded display -
- -TPED
- TPCM -

| P_SE Trip Unit embedded display setting                 | TPED setting                                                              | TPCM setting                                                                                                                                                                                                 | Default               |
|---------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Off: PTA Disabled<br>6095% Ir: Ip = 6095% of Ir         | "PreTrip Threshold Ir"<br>Off: PTA Disabled<br>6095% Ir: Ip = 6095% of Ir | Command ID: 113 "Pre-trip Alarm Pick-up threshold $I_p$ setting"<br>Hex 00 3C00 5F: $I_p$ = 6095% of $I_r$<br>*Disabling of PTA is performed via Command ID: 115 – Refer<br>to TemCom <i>PRO</i> User Manual | $I_p = 80\%$ of $I_r$ |
| <b>580% tr:</b> t <sub>p</sub> = 580% of l <sub>r</sub> | "PreTrip Delay"<br>580% tr: t <sub>p</sub> = 580% of I <sub>r</sub>       | Command ID: 114 "Pre-trip Alarm time-delay $t_p$ setting"<br>Hex 00 0500 50: $t_p$ = 580% of Ir                                                                                                              | $t_p$ = 50% of $t_r$  |

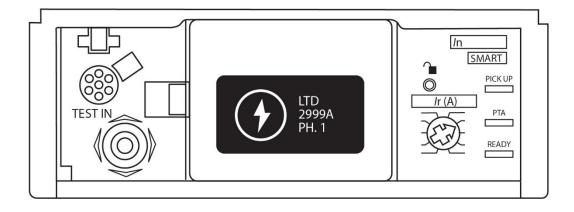
NHP



### **Trip Alarms**

The trip alarms indicate a trip type and provide information about the trip event values. The possible trips alarms are:

- Trip related to LTD protection
- Trip related to STD protection
- Trip related to INST protection
- Trip related to GF protection
- Trip related to Trip Unit testing, servicing, and maintenance tools


The following information is provided in the case of the message for a trip alarm:

- Trip cause
- Phase concerned by the fault (only for LTD, STD and INST related trips)
- Fault current value (only LTD, STD, INST and GF)

### Last trip

Information regarding the last trip is consistently stored, regardless of the priority associated with the alarm and can be viewed using one or a combination of the below methods:

- P\_SE Trip Unit embedded display
- TPED
- TPCM



-



### **Custom Alarms**

Custom alarms make it possible to produce alarms based specific events and measurements made by the P\_SE Trip Unit. They are only available to be configured and displayed using the TPED and/or TPCM in conjunction with the P\_SE MCCB.

Up to 12 custom alarms may be individually configured for a single P\_SE Trip Unit, with each used to monitor a single event of measurement.

Custom alarms may also be assigned to the OAC (Optional Alarm Contact) to provide a physical output when the respective custom alarm has been activated. Refer to <u>OAC (Optional Alarm Contact)</u> section for more information.



**Notice**: The use of the OAC physical contact requires the connection of the OAC/PTA cable to the OAC port located under the front cover of the P\_SE MCCB. Refer to the <u>Connection Cables</u> section for details on the OAC/PTA cable.

Only one Alarm can be configured to use the OAC at any one time

A custom alarm is defined through the following parameters:

- Measurement monitored
- Activation threshold
- Deactivation threshold
- Activation time delay
- Deactivation time delay
- Priority level

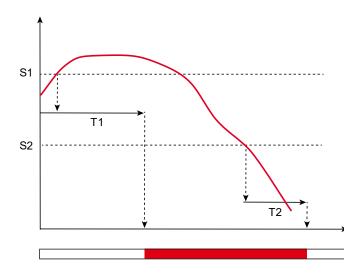
#### **Custom alarm parameters**

Configuration of custom alarm types, pick-up and drop-out thresholds and time delays can be made using one or a combination of the below methods:

- TPED
- TPCM

Refer to the respective device's User Manual for detailed instructions on how to configure the custom alarms.

Custom alarms may be configured to activate under specific conditions, which, depending on the event or measurement type may include one or more of the following parameters:

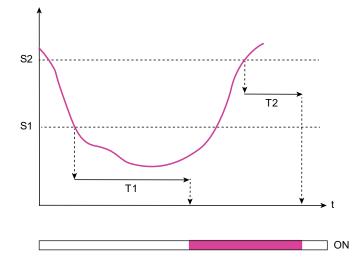

- Pick-up threshold
- Pick-up time delay
- Drop-out threshold
- Drop-out time delay
- Equivalent value

The pick-up threshold in conjunction with its time delay determine the value in which the custom alarm is activated, whereas the drop-out threshold is the value which de-activates the alarm. One may be set to a value higher or lower than the other, which determines whether the alarm activation is positive or negative with respect to the change in the measurement value.



### **Positive activation**

In the case of a positive activation, the alarm is activated when the monitored value increases towards the pick-up threshold. This occurs when the pick-up threshold is set to a higher value than the drop-out threshold.




| Symbol | Description         |
|--------|---------------------|
| S1     | Pick-up threshold   |
| S2     | Drop-out threshold  |
| T1     | Pick-up time delay  |
| T2     | Drop-out time delay |

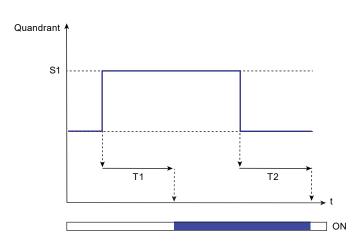
- -

### **Negative activation**

In the case of a negative activation, the alarm is activated when the monitored value decreases towards the pick-up threshold. This occurs when the pick-up threshold is set to a lower value than the drop-out threshold.



| Symbol | Description         |
|--------|---------------------|
| S1     | Pick-up threshold   |
| S2     | Drop-out threshold  |
| T1     | Pick-up time delay  |
| T2     | Drop-out time delay |








### Equivalent value activation

For the equal value activation, the alarm is activated when the value measured is equal to the configured value. The activation threshold is the same as the activation value.



| Symbol | Description         |
|--------|---------------------|
| S1     | Pick-up value       |
| T1     | Pick-up time delay  |
| T2     | Drop-out time delay |

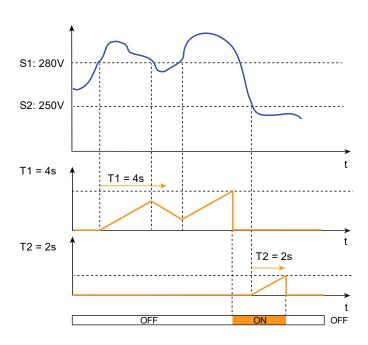


### **Time delays**

Custom alarms are activated once the pick-up threshold has been reached and the configured pick-up time delay has elapsed. Likewise, custom alarms are deactivated after the drop-out threshold is reached and the drop-out time delay has elapsed. Both pick-up and drop-out time delays are independently configurable, from a minimum 1 second to maximum 3000 seconds.

The time delays are provided as cumulative counters based on the time elapsed, which increments as the measured value reaches or exceeds the threshold value, and decrements if the measured value drops below the threshold value. Activation and deactivation of the respective custom alarm requires the time-delay counter to reach the configured time delay.

Pick-up time delay: For the activation of a custom alarm, the pick-up time delay counter:


- Increases by 1 per second when the pick-up threshold value is met or exceeded.
  - Decreases by 1 per second if the pick-up threshold value is not met and the cumulative elapsed time is not reached.
- Resets to 0 when the cumulative time delay is reached and custom alarm is activated.

Drop-out time delay: For the deactivation of a custom alarm, the drop-out time delay counter:

- Increases by 1 per second when the drop-out threshold value is met or exceeded.
- Decreases by 1 per second if the drop-out threshold value is not met and the cumulative elapsed time is not reached.
- Resets to 0 when the cumulative time delay is reached and custom alarm is activated.

If an alarm is reconfigured using the TPED or TPCM whilst a custom alarm time delay counter has begun, the counters are reset to 0.

Example: A custom alarm is set to a positive activation pick-up threshold of 280 V for an overvoltage measurement of V1N. The pick-up time delay is set to 4 seconds. The drop-out threshold value is set at 250 V and the drop-out time delay at 2 seconds.



| Symbol | Meaning             |
|--------|---------------------|
| S1     | Pick-up threshold   |
| S2     | Dop-out threshold   |
| T1     | Pick-up time delay  |
| T2     | Drop-out time delay |





### Custom alarms list

| ID | Name                                                          |                         | k-up or D | rop-out thresh |            |      | _   | Drop-out time o |            | 3Ph          | 3Ph+N          |
|----|---------------------------------------------------------------|-------------------------|-----------|----------------|------------|------|-----|-----------------|------------|--------------|----------------|
|    |                                                               | Unit                    | Res       | Min. value     | Max. value | Unit | Res | Min. value      | Max. value |              |                |
| 0  | No assignment                                                 | _                       | -         | -              | -          | _    | -   | -               | _          | $\checkmark$ | $\checkmark$   |
| 1  | Over Instantaneous Current [I1]                               | A                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 2  | Over Instantaneous Current [l <sub>2</sub> ]                  | A                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 3  | Over Instantaneous Current [I <sub>3</sub> ]                  | A                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 4  | Over Instantaneous Current [I <sub>N</sub> ] (*4P MCCB Only)  | A                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | _            | $\sqrt{*}$     |
| 5  | Over Instantaneous Current [Imax]                             | A                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 6  | Under Instantaneous Current [I <sub>1</sub> ]                 | A                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 7  | Under Instantaneous Current [I2]                              | А                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 8  | Under Instantaneous Current [I <sub>3</sub> ]                 | А                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 9  | Under Instantaneous Current [I <sub>N</sub> ] (*4P MCCB Only) | Α                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | _            | $\checkmark^*$ |
| 10 | Ground Current                                                | x l <sub>g</sub>        | 0.01      | 0.1            | 1          | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 11 | Over Unbalance Current [I1]                                   | x l <sub>avg</sub>      | 0.1%      | 5%             | 60%        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 12 | Over Unbalance Current [l2]                                   | x l <sub>avg</sub>      | 0.1%      | 5%             | 60%        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 13 | Over Unbalance Current [I <sub>3</sub> ]                      | x l <sub>avg</sub>      | 0.1%      | 5%             | 60%        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 14 | Over Unbalance Current [Imax Unb]                             | x l <sub>avg</sub>      | 0.1%      | 5%             | 60%        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 15 | Over Average Current [Iavg]                                   | А                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 16 | Under Average Current [lavg]                                  | А                       | 0.1       | 8              | 6300       | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 17 | Over Instantaneous Voltage [V1N]                              | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       |              | $\checkmark$   |
| 18 | Over Instantaneous Voltage [V <sub>2N</sub> ]                 | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       |              | $\checkmark$   |
| 19 | Over Instantaneous Voltage [V <sub>3N</sub> ]                 | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 20 | Over Instantaneous Voltage [V <sub>max</sub> ]                | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 21 | Under Instantaneous Voltage [V <sub>1N</sub> ]                | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 22 | Under Instantaneous Voltage [V2N]                             | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 23 | Under Instantaneous Voltage [V <sub>3N</sub> ]                | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 24 | Under Instantaneous Voltage [Vmin]                            | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 25 | Over Unbalance Voltage [V <sub>1N</sub> ]                     | x V <sub>avg</sub>      | 0.1%      | 2%             | 30%        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 26 | Over Unbalance Voltage [V <sub>2N</sub> ]                     | x V <sub>avg</sub>      | 0.1%      | 2%             | 30%        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 27 | Over Unbalance Voltage [V <sub>3N</sub> ]                     | x V <sub>avg</sub>      | 0.1%      | 2%             | 30%        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 28 | Over Unbalance Voltage [V <sub>max Unb</sub> ]                | x V <sub>avg</sub>      | 0.1%      | 2%             | 30%        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 29 | Over Average Voltage [V <sub>avg</sub> ]                      | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 30 | Under Average Voltage [Vavg]                                  | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | _            | $\checkmark$   |
| 31 | Over Instantaneous Voltage [U <sub>12</sub> ]                 | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 32 | Over Instantaneous Voltage [U <sub>23</sub> ]                 | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 33 | Over Instantaneous Voltage [U <sub>31</sub> ]                 | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 34 | Over Instantaneous Voltage [U <sub>max</sub> ]                | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | <br>√        | <br>√          |
| 35 | Under Instantaneous Voltage [U12]                             | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | <br>√        | $\checkmark$   |
| 36 | Under Instantaneous Voltage [U <sub>23</sub> ]                | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | <br>√        | $\checkmark$   |
| 37 | Under Instantaneous Voltage [U <sub>31</sub> ]                | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 38 | Under Instantaneous Voltage [Umin]                            | V                       | 0.1       | 80             | 800        | sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 39 | Over Unbalance Voltage [U12]                                  | v<br>x U <sub>avg</sub> | 0.1%      | 2%             | 30%        | Sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 40 | Over Unbalance Voltage [U <sub>23</sub> ]                     | x U <sub>avg</sub>      | 0.1%      | 2%             | 30%        | Sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |
| 40 | Over Unbalance Voltage [U <sub>31</sub> ]                     | x U <sub>avg</sub>      | 0.1%      | 2%             | 30%        |      | 1   | 1               | 3000       |              |                |
|    |                                                               |                         |           |                |            | Sec  |     |                 |            | $\checkmark$ | $\checkmark$   |
| 42 | Over Unbalance Voltage [U <sub>max Unb</sub> ]                | $x \; U_{\text{avg}}$   | 0.1%      | 2%             | 30%        | Sec  | 1   | 1               | 3000       | $\checkmark$ | $\checkmark$   |





| 1         0.00         Image: 1         1         3000          -/           14         Over Dreck Ackie power [Pa]         MV         0.11         1         1000         sec         1         1         3000          -/           16         Diver Dreck Ackie power [Pa]         MV         0.11         1         1000         sec         1         1         3000          -/           17         Under Direck Ackie power [Pa]         MV         0.11         1         1000         sec         1         1         3000          -/           19         Under Direck Ackie power [Pa]         MV         0.11         1         1000         sec         1         1         3000          -/           10         Under Direck Ackie power [Pa]         MV         0.11         1         3000         sec         1         1         3000          -/           10         Over Reatur Ackie power [Pa]         MV         0.11         1         1000         sec         1         1         3000          -/           10         Over Reatur Ackie power [Pa]         MV         0.11         1 <th>ID</th> <th>Name</th> <th>Pic<br/>Unit</th> <th>k-up or E<br/>Res</th> <th>Drop-out thresh<br/>Min. value</th> <th>old value<br/>Max. value</th> <th>Pick<br/>Unit</th> <th>-up or [<br/>Res</th> <th>Drop-out time o<br/>Min. value</th> <th>delay value<br/>Max. value</th> <th>3Ph</th> <th>3Ph+N</th> | ID | Name                                           | Pic<br>Unit | k-up or E<br>Res | Drop-out thresh<br>Min. value | old value<br>Max. value | Pick<br>Unit | -up or [<br>Res | Drop-out time o<br>Min. value | delay value<br>Max. value | 3Ph          | 3Ph+N        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------|-------------|------------------|-------------------------------|-------------------------|--------------|-----------------|-------------------------------|---------------------------|--------------|--------------|
| d+5         Over Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+7         Under Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+8         Under Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+10der Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+10der Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+10der Batter Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d         Ower Return Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d         Under Return Achie power [Pi]                                                                                                                                                                                                                           | 43 | Over Direct Active power [P1]                  |             |                  |                               |                         |              |                 |                               |                           | —            | $\checkmark$ |
| d+5         Over Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+7         Under Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+8         Under Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+10der Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+10der Direct Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d+10der Batter Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d         Ower Return Achie power [Pi]         kW         0.1         1         1000         sec         1         1         3000         -/         //           d         Under Return Achie power [Pi]                                                                                                                                                                                                                           | 44 |                                                | kW          | 0.1              | 1                             | 1000                    |              | 1               | 1                             | 3000                      | _            |              |
| 46       Own Direct Acting power [P_i]       WN       0.1       1       3000       scc       1       3000       -/         47       Under Direct Acting power [P_i]       WN       0.1       1       1000       sec       1       1       3000       -/         48       Under Direct Acting power [P_i]       WN       0.1       1       1000       sec       1       1       3000       -/       //         49       Under Direct Acting power [P_i]       WN       0.1       1       1000       sec       1       1       3000       -/       //         50       Under Direct Acting power [P_i]       WN       0.1       1       1000       sec       1       1       3000       -/       //         51       Over Return Acting power [P_i]       WN       0.1       1       1000       sec       1       1       3000       -/       //         50       Under Return Acting power [P_i]       WN       0.1       1       1000       sec       1       1       3000       -/       //       //       //       //       //       //       //       //       //       //       //       //       //       // <td>45</td> <td>Over Direct Active power [P<sub>3</sub>]</td> <td>kW</td> <td>0.1</td> <td>1</td> <td>1000</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td>_</td> <td></td>                                                                                                                            | 45 | Over Direct Active power [P <sub>3</sub> ]     | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 47       Under Diect Active power [P]       WV       0.1       1       1000       sec       1       1       3000        ./         48       Under Diect Active power [P]       WV       0.1       1       1000       sec       1       1       3000        ./         50       Under Diect Active power [P]       WV       0.1       1       1000       sec       1       1       3000        ./         51       Over Return Active power [P]       WV       0.1       1       1000       sec       1       1       3000        ./         52       Over Return Active power [P]       WV       0.1       1       1000       sec       1       1       3000        ./         53       Under Return Active power [P]       WV       0.1       1       1000       sec       1       1       3000        ./         54       Under Return Active power [P]       WV       0.1       1       1000       sec       1       1       3000        ./         55       Under Return Active power [P]       WV       0.1       1       1000       sec       1<                                                                                                                                                                                                                                                                                                                                                                             | 46 | Over Direct Active power [P <sub>tot</sub> ]   | kW          | 0.1              | 1                             | 3000                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ |              |
| 143         Under Direct Active power [Ps]         WV         0.1         1         1000         esc.         1         1         2000          //           16         Under Direct Active power [Ps]         WV         0.1         1         1000         sec.         1         1         2000          //           16         Ower Return Active power [Ps]         WV         0.1         1         1000         sec.         1         1         2000          //           15         Ower Return Active power [Ps]         WV         0.1         1         1000         sec.         1         1         2000          //           16         Under Return Active power [Ps]         WV         0.1         1         1000         sec.         1         1         2000          //           16         Under Return Active power [Ps]         WV         0.1         1         1000         sec.         1         1         2000          //          5000          //         5000          //         5000          //         5000          //         5000 <td< td=""><td>47</td><td>Under Direct Active power [P1]</td><td>kW</td><td>0.1</td><td>1</td><td>1000</td><td>sec</td><td>1</td><td>1</td><td>3000</td><td></td><td></td></td<>                                                                                                                                                                    | 47 | Under Direct Active power [P1]                 | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      |              |              |
| 19         Under Direct Active power [Pa]         IVV         0.1         1         1000         esc         1         1         1000         -         /           50         Under Direct Active power [Pa]         KW         0.1         1         1000         acc         1         1         3000         -         /           50         Over Return Active power [Pa]         KW         0.1         1         1000         sec         1         1         3000         -         /           51         Over Return Active power [Pa]         KW         0.1         1         1000         sec         1         1         3000         -         /           54         Over Return Active power [Pa]         KW         0.1         1         1000         sec         1         1         3000         -         /           56         Under Return Active power [Pa]         KW         0.1         1         1000         sec         1         1         3000         -         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /                                                                                                                                                                                                                                                    | 48 | Under Direct Active power [P2]                 | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 100         Inder Direck Active power [Pi]         IVV         0.1         1         3000         sec         1         1         1         3000         -/         //           51         Over Return Active power [Pi]         IVV         0.1         1         1000         sec         1         1         3000         -/         //           63         Ower Return Active power [Pi]         IVV         0.1         1         1000         sec         1         1         3000         -/         //           64         Ower Return Active power [Pi]         IVV         0.1         1         1000         sec         1         1         3000         -/         //           75         Under Return Active power [Pi]         IVV         0.1         1         1000         sec         1         1         3000         -/         //           70         Under Return Active power [Pi]         IVV         0.1         1         1000         sec         1         1         3000         -/         //         //         //         //         //         //         //         //         //         //         //         //         //         //         // <td< td=""><td>49</td><td>Under Direct Active power [P<sub>3</sub>]</td><td>kW</td><td>0.1</td><td>1</td><td>1000</td><td>sec</td><td>1</td><td>1</td><td>3000</td><td>_</td><td></td></td<>                                           | 49 | Under Direct Active power [P <sub>3</sub> ]    | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 12       Over Return Active power [P.]       KW       0.1       1       1000       sec       1       1       3000        ./         53       Over Return Active power [P.]       KW       0.1       1       1000       sec       1       1       3000        ./         54       Over Return Active power [P.]       KW       0.1       1       1000       sec       1       1       3000        ./         55       Under Return Active power [P.]       KW       0.1       1       1000       sec       1       1       3000        ./         56       Under Return Active power [P.]       KW       0.1       1       1000       sec       1       1       3000        ./       ./         57       Under Return Active power [D.]       KWr       0.1       1       1000       sec       1       1       3000        ./       ./       ./         60       Over Direct Reactive power [D.]       KWr       0.1       1       1000       sec       1       1       3000        ./       ./       ./       ./       ./       ./       ./       ./                                                                                                                                                                                                                                                                                                                                                                               | 50 | Under Direct Active power [Ptot]               | kW          | 0.1              | 1                             | 3000                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ |              |
| 53         Over Return Active power [P.]         KW         0.1         1         1000         sec         1         1         3000          ./           54         Over Return Active power [P.]         KW         0.1         1         3000         sec         1         3000          ./           55         Under Return Active power [P.]         KW         0.1         1         1000         sec         1         1         3000          ./           56         Under Return Active power [P.]         KW         0.1         1         1000         sec         1         1         3000          ./           57         Under Return Active power [P.]         KW         0.1         1         1000         sec         1         1         3000          ./         ./           50         Over Direct Reactive power [O.]         KVAr         0.1         1         1000         sec         1         1         3000          ./         ./           61         Over Direct Reactive power [O.]         KVAr         0.1         1         1000         sec         1         1         3000          ./                                                                                                                                                                                                                                                                                                 | 51 | Over Return Active power [P1]                  | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            | $\checkmark$ |
| S3       Over Return Active power [P.]       KW       0.1       1       1000       sec       1       3000        ./         54       Over Return Active power [P.]       KW       0.1       1       3000       sec       1       1       3000        ./         55       Under Return Active power [P.]       KW       0.1       1       1000       sec       1       3000        ./         57       Under Return Active power [P.]       KW       0.1       1       1000       sec       1       3000        ./         58       Under Return Active power [P.]       KW       0.1       1       1000       sec       1       1       3000        ./         59       Over Direct Reactive power [O.]       KVAr       0.1       1       1000       sec       1       1       3000        ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./       ./                                                                                                                                                                                                                                                                                                                                                                         | 52 | Over Return Active power [P2]                  | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            | $\checkmark$ |
| 155         Under Return Active power [P.]         KW         0.1         1         1000         sec         1         1         3000          /           56         Under Return Active power [P.]         KW         0.1         1         1000         sec         1         1         3000          /           58         Under Return Active power [P.]         KW         0.1         1         1000         sec         1         1         3000          /           50         Over Direct Reactive power [O.]         KVAr         0.1         1         1000         sec         1         1         3000          /           61         Over Direct Reactive power [O.]         KVAr         0.1         1         1000         sec         1         1         3000          /           62         Over Direct Reactive power [O.]         KVAr         0.1         1         1000         sec         1         1         3000          /         /           63         Under Direct Reactive power [O.]         KVAr         0.1         1         1000         sec         1         1         3000          /<                                                                                                                                                                                                                                                                                               | 53 | Over Return Active power [P <sub>3</sub> ]     | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 155       Under Return Active power [P <sub>1</sub> ]       KW       0.1       1       1000       sec       1       1       3000        ./         56       Under Return Active power [P <sub>1</sub> ]       KW       0.1       1       1000       sec       1       1       3000        ./         57       Under Return Active power [P <sub>1</sub> ]       KW       0.1       1       3000       sec       1       1       3000        ./         59       Over Direct Reactive power [O <sub>2</sub> ]       KWA       0.1       1       1000       sec       1       1       3000        ./         61       Over Direct Reactive power [O <sub>2</sub> ]       KVAr       0.1       1       1000       sec       1       1       3000        ./         62       Over Direct Reactive power [O <sub>2</sub> ]       KVAr       0.1       1       1000       sec       1       1       3000        ./       ./         63       Under Direct Reactive power [O <sub>2</sub> ]       KVAr       0.1       1       1000       sec       1       1       3000        ./       ./       ./       ./       ./       ./       ./       ./       .                                                                                                                                                                                                                                                                                 | 54 | Over Return Active power [Ptot]                | kW          | 0.1              | 1                             | 3000                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ | $\checkmark$ |
| 57       Under Return Active power [Pu]       KW       0.1       1       1000       sec       1       1       3000        ./         58       Under Return Active power [Pu]       KW       0.1       1       3000       sec       1       1       3000       ./       ./         59       Over Direct Reactive power [Qu]       KWAr       0.1       1       1000       sec       1       1       3000        ./         61       Over Direct Reactive power [Qu]       KWAr       0.1       1       1000       sec       1       1       3000        ./         62       Over Direct Reactive power [Qu]       KWAr       0.1       1       1000       sec       1       1       3000        ./         63       Under Direct Reactive power [Qu]       KWAr       0.1       1       1000       sec       1       1       3000        ./       ./         64       Under Direct Reactive power [Qu]       KWAr       0.1       1       1000       sec       1       1       3000        ./       ./       ./       ./       ./       ./       ./       ./       ./                                                                                                                                                                                                                                                                                                                                                               | 55 | Under Return Active power [P1]                 | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 17       Under Return Active power [P_i]       KW       0.1       1       1000       sec       1       1       3000        ./         58       Under Return Active power [Q_i]       KW       0.1       1       3000       sec       1       1       3000        ./         59       Over Direct Reactive power [Q_i]       KWAr       0.1       1       1000       sec       1       1       3000        ./         60       Over Direct Reactive power [Q_i]       KWAr       0.1       1       1000       sec       1       1       3000        ./         61       Under Direct Reactive power [Q_i]       KWAr       0.1       1       1000       sec       1       1       3000        ./         63       Under Direct Reactive power [Q_i]       KWAr       0.1       1       1000       sec       1       1       3000        ./       ./       ./         64       Under Direct Reactive power [Q_i]       KWAr       0.1       1       1000       sec       1       1       3000        ./       ./       ./       ./       ./       ./       ./       ./<                                                                                                                                                                                                                                                                                                                                                              | 56 | Under Return Active power [P2]                 | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            | $\checkmark$ |
| 58         Under Return Active power [Pu-]         WW         0.1         1         3000         sec         1         1         3000         -/         //           59         Over Direct Reactive power [Q_1]         KVAr         0.1         1         1000         sec         1         1         3000          -/           60         Over Direct Reactive power [Q_2]         KVAr         0.1         1         1000         sec         1         1         3000          -/           61         Over Direct Reactive power [Q_2]         KVAr         0.1         1         1000         sec         1         1         3000          -/           63         Under Direct Reactive power [Q_2]         KVAr         0.1         1         1000         sec         1         1         3000          -/           64         Under Direct Reactive power [Q_2]         KVAr         0.1         1         1000         sec         1         1         3000          -/           65         Under Direct Reactive power [Q_2]         KVAr         0.1         1         1000         sec         1         1         3000          -/ </td <td>57</td> <td></td> <td>kW</td> <td>0.1</td> <td>1</td> <td>1000</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td>_</td> <td><math>\checkmark</math></td>                                                                                                 | 57 |                                                | kW          | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            | $\checkmark$ |
| 59       Over Direct Reactive power [Q_i]       kVAr       0.1       1       1000       sec       1       1       3000        ./         60       Over Direct Reactive power [Q_i]       kVAr       0.1       1       1000       sec       1       1       3000        ./         61       Over Direct Reactive power [Q_i]       kVAr       0.1       1       1000       sec       1       1       3000        ./         62       Under Direct Reactive power [Q_i]       kVAr       0.1       1       1000       sec       1       1       3000        ./         64       Under Direct Reactive power [Q_i]       kVAr       0.1       1       1000       sec       1       1       3000        ./         65       Under Direct Reactive power [Q_i]       kVAr       0.1       1       1000       sec       1       1       3000        ./       ./       .         66       Under Direct Reactive power [Q_i]       kVAr       0.1       1       1000       sec       1       1       3000        ./       ./       ./       ./       ./       ./       ./                                                                                                                                                                                                                                                                                                                                                                  | 58 | Under Return Active power [Ptot]               | kW          | 0.1              | 1                             | 3000                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ |              |
| 60         Over Direct Reactive power [Q_]         k/VAr         0.1         1         1000         sec         1         1         3000          ./           61         Over Direct Reactive power [Q_]         k/VAr         0.1         1         1000         sec         1         1         3000          ./           62         Over Direct Reactive power [Q_]         k/VAr         0.1         1         1000         sec         1         1         3000          ./           63         Under Direct Reactive power [Q_]         k/VAr         0.1         1         1000         sec         1         1         3000          ./           64         Under Direct Reactive power [Q_]         k/VAr         0.1         1         1000         sec         1         1         3000          ./           66         Under Direct Reactive power [Q_]         k/VAr         0.1         1         1000         sec         1         1         3000          ./           68         Over Return Reactive power [Q_]         k/VAr         0.1         1         1000         sec         1         1         3000                                                                                                                                                                                                                                                                                              | 59 | Over Direct Reactive power [Q1]                | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      |              |              |
| 61       Over Direct Reactive power [Q <sub>2</sub> ]       kV/k       0.1       1       1000       sec       1       1       3000        ./         62       Over Direct Reactive power [Q <sub>2</sub> ]       kV/k       0.1       1       3000       sec       1       1       3000        ./         63       Under Direct Reactive power [Q <sub>2</sub> ]       kV/k       0.1       1       1000       sec       1       1       3000        ./         64       Under Direct Reactive power [Q <sub>2</sub> ]       kV/k       0.1       1       3000       sec       1       1       3000        ./         65       Under Direct Reactive power [Q <sub>2</sub> ]       kV/k       0.1       1       3000       sec       1       1       3000        ./       ./         66       Under Direct Reactive power [Q <sub>2</sub> ]       kV/k       0.1       1       3000       sec       1       1       3000        ./       ./         67       Over Return Reactive power [Q <sub>2</sub> ]       kV/k       0.1       1       1000       sec       1       1       3000        ./       .//       .//       .//       .//       .//       ./                                                                                                                                                                                                                                                                        | 60 | Over Direct Reactive power [Q <sub>2</sub> ]   | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 62       Over Direct Reactive power [Q <sub>1</sub> ]       kVAr       0.1       1       3000       sec       1       1       3000        √         63       Under Direct Reactive power [Q <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         64       Under Direct Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         65       Under Direct Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         66       Under Direct Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         67       Over Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √       √         68       Over Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √       √         70       Over Apparent power [Q <sub>2</sub> ]       kVAr       0.1 <td>61</td> <td>Over Direct Reactive power [Q<sub>3</sub>]</td> <td>kVAr</td> <td>0.1</td> <td>1</td> <td>1000</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td>_</td> <td></td>                                                                      | 61 | Over Direct Reactive power [Q <sub>3</sub> ]   | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 63       Under Direct Reactive power [0,]       kVAr       0.1       1       1000       sec       1       1       3000        √         64       Under Direct Reactive power [0,]       kVAr       0.1       1       1000       sec       1       1       3000        √         65       Under Direct Reactive power [0,]       kVAr       0.1       1       1000       sec       1       1       3000        √         66       Under Direct Reactive power [0,]       kVAr       0.1       1       1000       sec       1       1       3000        √         67       Over Return Reactive power [0,]       kVAr       0.1       1       1000       sec       1       1       3000        √         68       Over Return Reactive power [0,]       kVAr       0.1       1       1000       sec       1       1       3000        √         70       Over Return Reactive power [0,]       kVAr       0.1       1       1000       sec       1       1       3000        √         71       Under Return Reactive power [0,]       kVAr       0.1       1       1000                                                                                                                                                                                                                                                                                                                                                             | 62 | Over Direct Reactive power [Q <sub>tot</sub> ] | kVAr        | 0.1              | 1                             | 3000                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ |              |
| 64         Under Direct Reactive power [0:]         kVAr         0.1         1         1000         sec         1         1         3000          √           65         Under Direct Reactive power [0:]         kVAr         0.1         1         1000         sec         1         1         3000          √           66         Under Direct Reactive power [0:]         kVAr         0.1         1         3000         sec         1         1         3000          √           67         Over Return Reactive power [0:]         kVAr         0.1         1         1000         sec         1         1         3000          √           69         Over Return Reactive power [0:]         kVAr         0.1         1         1000         sec         1         1         3000          √           70         Over Return Reactive power [0:]         kVAr         0.1         1         1000         sec         1         1         3000          √           71         Under Return Reactive power [0:]         kVAr         0.1         1         1000         sec         1         1         3000          √                                                                                                                                                                                                                                                                                               |    |                                                |             | 0.1              | 1                             | 1000                    |              | 1               | 1                             | 3000                      |              |              |
| 66       Under Direct Reactive power [0 <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         66       Under Direct Reactive power [0 <sub>1</sub> ]       kVAr       0.1       1       3000       sec       1       1       3000       √       √         67       Over Return Reactive power [0 <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         68       Over Return Reactive power [0 <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         69       Over Return Reactive power [0 <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         70       Over Return Reactive power [0 <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         71       Under Return Reactive power [0 <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         73       Under Return Reactive power [0 <sub>2</sub> ]       kVAr       0.1       1 <t< td=""><td>64</td><td></td><td>kVAr</td><td>0.1</td><td>1</td><td>1000</td><td>sec</td><td>1</td><td>1</td><td>3000</td><td>_</td><td></td></t<>                                                                                                      | 64 |                                                | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 66       Under Direct Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       3000       sec       1       1       3000       √       √         67       Over Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000       -       √         68       Over Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000       -       √         69       Over Return Reactive power [Q <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000       -       √         70       Over Return Reactive power [Q <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000       -       √         71       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000       -       √         72       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000       -       √       √         74       Under Return Reactive power [S <sub>2</sub> ]       kVA       0.1       1 <td>65</td> <td></td> <td>kVAr</td> <td>0.1</td> <td>1</td> <td>1000</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td>_</td> <td></td>                                                         | 65 |                                                | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 67       Over Return Reactive power [Q <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         68       Over Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         69       Over Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         70       Over Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       3000       sec       1       1       3000        √         71       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       3000        √         72       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       3000        √         74       Under Return Reactive power [Q <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        √          75       Over Apparent power [S <sub>1</sub> ]       kVA       0.1       1       1000       sec </td <td></td> <td></td> <td></td> <td>0.1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td><math>\checkmark</math></td> <td></td>                                                                                                            |    |                                                |             | 0.1              | 1                             |                         |              | 1               |                               |                           | $\checkmark$ |              |
| 68         Over Return Reactive power [Q <sub>2</sub> ]         kVAr         0.1         1         1000         sec         1         1         3000          √           69         Over Return Reactive power [Q <sub>2</sub> ]         kVAr         0.1         1         1000         sec         1         1         3000          √           70         Over Return Reactive power [Q <sub>2</sub> ]         kVAr         0.1         1         3000         sec         1         1         3000          √           71         Under Return Reactive power [Q <sub>2</sub> ]         kVAr         0.1         1         1000         sec         1         1         3000          √           73         Under Return Reactive power [Q <sub>2</sub> ]         kVAr         0.1         1         1000         sec         1         1         3000          √           74         Under Return Reactive power [Q <sub>2</sub> ]         kVAr         0.1         1         1000         sec         1         1         3000          √           75         Over Apparent power [S <sub>2</sub> ]         kVA         0.1         1         1000         sec         1         3000          √                                                                                                                                                                                                                       |    |                                                |             | 0.1              | 1                             |                         |              | 1               |                               |                           |              |              |
| 69       Over Return Reactive power [Q_a]       kVAr       0.1       1       1000       sec       1       1       3000 $\checkmark$ 70       Over Return Reactive power [Q_a]       kVAr       0.1       1       3000       sec       1       1       3000 $\checkmark$ $\checkmark$ 71       Under Return Reactive power [Q_a]       kVAr       0.1       1       1000       sec       1       1       3000 $\checkmark$ 72       Under Return Reactive power [Q_a]       kVAr       0.1       1       1000       sec       1       1       3000 $\checkmark$ 73       Under Return Reactive power [Q_a]       kVAr       0.1       1       1000       sec       1       1       3000 $\checkmark$ 74       Under Return Reactive power [S_a]       kVA       0.1       1       1000       sec       1       1       3000 $\checkmark$ 75       Over Apparent power [S_a]       kVA       0.1       1       1000       sec       1       1       3000 $\checkmark$ $\checkmark$ 76       Over Apparent power [S_a]       kVA       0.1       1 <td>68</td> <td></td> <td>kVAr</td> <td></td> <td>1</td> <td>1000</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td>_</td> <td></td>                                                                                                                                                                                                                                       | 68 |                                                | kVAr        |                  | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| TO       Over Return Reactive power [Q <sub>1</sub> ]       kVAr       0.1       1       3000       sec       1       1       3000       √       √         71       Under Return Reactive power [Q <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         72       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         73       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         74       Under Return Reactive power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        √         76       Over Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        √         77       Over Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        √         78       Over Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec                                                                                                                                                                                                                                                              | 69 |                                                | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 71       Under Return Reactive power [Ω <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         72       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         73       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         74       Under Return Reactive power [Q <sub>2</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000        √         75       Over Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        √         76       Over Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        √         77       Over Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        √         78       Under Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec <td>70</td> <td></td> <td>kVAr</td> <td>0.1</td> <td>1</td> <td>3000</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td><math>\checkmark</math></td> <td></td>                                                                                                     | 70 |                                                | kVAr        | 0.1              | 1                             | 3000                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ |              |
| 72       Under Return Reactive power [Q2]       kVAr       0.1       1       1000       sec       1       1       3000 $\checkmark$ 73       Under Return Reactive power [Q2]       kVAr       0.1       1       1000       sec       1       1       3000 $\checkmark$ 74       Under Return Reactive power [Que]       kVAr       0.1       1       3000       sec       1       1       3000 $\checkmark$ 75       Over Apparent power [S1]       kVA       0.1       1       1000       sec       1       1       3000 $\checkmark$ 76       Over Apparent power [S2]       kVA       0.1       1       1000       sec       1       1       3000 $\checkmark$ 77       Over Apparent power [S2]       kVA       0.1       1       1000       sec       1       1       3000 $\checkmark$ $\checkmark$ 78       Over Apparent power [S1]       kVA       0.1       1       1000       sec       1       1       3000 $\checkmark$ $\checkmark$ 80       Under Apparent power [S1]       kVA       0.1       1       1000 <td< td=""><td>71</td><td>Under Return Reactive power [Q1]</td><td>kVAr</td><td>0.1</td><td>1</td><td>1000</td><td>sec</td><td>1</td><td>1</td><td>3000</td><td></td><td></td></td<>                                                                                                                                                                                                                  | 71 | Under Return Reactive power [Q1]               | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      |              |              |
| 73       Under Return Reactive power [Q <sub>1</sub> ]       kVAr       0.1       1       1000       sec       1       1       3000       -       √         74       Under Return Reactive power [Q <sub>10</sub> ]       kVAr       0.1       1       3000       sec       1       1       3000       √       √         75       Over Apparent power [S <sub>1</sub> ]       kVA       0.1       1       1000       sec       1       1       3000       -       √         76       Over Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000       -       √         77       Over Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000       -       √         78       Over Apparent power [S <sub>1</sub> ]       kVA       0.1       1       1000       sec       1       1       3000       -       √         79       Under Apparent power [S <sub>1</sub> ]       kVA       0.1       1       1000       sec       1       1       3000       -       √          80       Under Apparent power [S <sub>1</sub> ]       kVA       0.1       1       1000       sec                                                                                                                                                                                                                                         | 72 | Under Return Reactive power [Q <sub>2</sub> ]  | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 74         Under Return Reactive power [Q <sub>bu</sub> ]         kVAr         0.1         1         3000         sec         1         1         3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73 | Under Return Reactive power [Q <sub>3</sub> ]  | kVAr        | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 75       Over Apparent power [S·]       kVA       0.1       1       1000       sec       1       1       3000        ✓         76       Over Apparent power [S·]       kVA       0.1       1       1000       sec       1       1       3000        ✓         77       Over Apparent power [S·]       kVA       0.1       1       1000       sec       1       1       3000        ✓         78       Over Apparent power [S·i]       kVA       0.1       1       3000       sec       1       1       3000        ✓         79       Under Apparent power [S·]       kVA       0.1       1       1000       sec       1       1       3000        ✓         80       Under Apparent power [S·]       kVA       0.1       1       1000       sec       1       1       3000        ✓         81       Under Apparent power [S·]       kVA       0.1       1       3000       sec       1       1       3000        ✓         82       Under Apparent power [S·i]       kVA       0.1       1       3000       sec       1       1       30                                                                                                                                                                                                                                                                                                                                                                                         | 74 |                                                | kVAr        | 0.1              | 1                             | 3000                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ |              |
| 77       Over Apparent power [S <sub>3</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        ✓         78       Over Apparent power [S <sub>14</sub> ]       kVA       0.1       1       3000       sec       1       1       3000       ✓       ✓         79       Under Apparent power [S <sub>12</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        ✓         80       Under Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        ✓         80       Under Apparent power [S <sub>3</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        ✓         81       Under Apparent power [S <sub>40</sub> ]       kVA       0.1       1       3000       sec       1       1       3000        ✓         82       Under Apparent power [S <sub>40</sub> ]       kVA       0.1       1       3000       sec       1       1       3000        ✓         83       Lagging power factor [PF <sub>1</sub> ]       -       0.01       0       0.99       sec       1                                                                                                                                                                                                                                                                                       | 75 | Over Apparent power [S1]                       | kVA         | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      |              |              |
| 77       Over Apparent power [S <sub>3</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        ✓         78       Over Apparent power [S <sub>14</sub> ]       kVA       0.1       1       3000       sec       1       1       3000       ✓       ✓         79       Under Apparent power [S <sub>12</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        ✓         80       Under Apparent power [S <sub>2</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        ✓         80       Under Apparent power [S <sub>3</sub> ]       kVA       0.1       1       1000       sec       1       1       3000        ✓         81       Under Apparent power [S <sub>40</sub> ]       kVA       0.1       1       3000       sec       1       1       3000        ✓         82       Under Apparent power [S <sub>40</sub> ]       kVA       0.1       1       3000       sec       1       1       3000        ✓         83       Lagging power factor [PF <sub>1</sub> ]       -       0.01       0       0.99       sec       1                                                                                                                                                                                                                                                                                       | 76 | Over Apparent power [S <sub>2</sub> ]          | kVA         | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            | $\checkmark$ |
| 78       Over Apparent power [Stil]       kVA       0.1       1       3000       sec       1       1       3000 $\checkmark$ $\checkmark$ 79       Under Apparent power [Stil]       kVA       0.1       1       1000       sec       1       1       3000 $ \checkmark$ 80       Under Apparent power [Stil]       kVA       0.1       1       1000       sec       1       1       3000 $ \checkmark$ 80       Under Apparent power [Stil]       kVA       0.1       1       1000       sec       1       1       3000 $ \checkmark$ 81       Under Apparent power [Stil]       kVA       0.1       1       1000       sec       1       1       3000 $ \checkmark$ 82       Under Apparent power [Stil]       kVA       0.1       1       3000       sec       1       1       3000 $ \checkmark$ 83       Lagging power factor [PFt]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ $\checkmark$ 8       Lagging power factor [PFtal]       -       0.01       0       0.99       sec       1 </td <td>77</td> <td></td> <td>kVA</td> <td>0.1</td> <td>1</td> <td>1000</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td>_</td> <td></td>                                                                                                                                                                                                                             | 77 |                                                | kVA         | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 80         Under Apparent power [S2]         kVA         0.1         1         1000         sec         1         1         3000 $\checkmark$ 81         Under Apparent power [S3]         kVA         0.1         1         1000         sec         1         1         3000 $\checkmark$ 82         Under Apparent power [Sw]         kVA         0.1         1         3000         sec         1         1         3000 $\checkmark$ 83         Lagging power factor [PF1]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ 84         Lagging power factor [PF2]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ 85         Lagging power factor [PF2]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ 86         Lagging power factor [PFs3]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ 8         Leading                                                                                                                                                                                                                                                                                                                                                                                                                   | 78 |                                                |             |                  | 1                             | 3000                    | sec          | 1               |                               | 3000                      | $\checkmark$ |              |
| 80       Under Apparent power [S2]       kVA       0.1       1       1000       sec       1       1       3000 $\checkmark$ 81       Under Apparent power [S3]       kVA       0.1       1       1000       sec       1       1       3000 $\checkmark$ 82       Under Apparent power [Su]       kVA       0.1       1       3000       sec       1       1       3000 $\checkmark$ 83       Lagging power factor [PF1]        0.01       0       0.99       sec       1       1       3000 $\checkmark$ 84       Lagging power factor [PF2]        0.01       0       0.99       sec       1       1       3000 $\checkmark$ 85       Lagging power factor [PF3]        0.01       0       0.99       sec       1       1       3000 $\checkmark$ 86       Lagging power factor [PF3]        0.01       0       0.99       sec       1       1       3000 $\checkmark$ 87       Leading displacement PF [Cos $\phi_1$ ]        0.01       0       0.99       sec       1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79 | Under Apparent power [S <sub>1</sub> ]         | kVA         | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            | $\checkmark$ |
| 82       Under Apparent power [Stee]       kVA       0.1       1       3000       sec       1       1       3000 $\checkmark$ $\checkmark$ 83       Lagging power factor [PF1]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 84       Lagging power factor [PF2]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 85       Lagging power factor [PF3]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 86       Lagging power factor [PFa]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 87       Leading displacement PF [Cos $\varphi_1$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 88       Leading displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec <td< td=""><td>80</td><td></td><td>kVA</td><td>0.1</td><td>1</td><td>1000</td><td>sec</td><td>1</td><td>1</td><td>3000</td><td>_</td><td></td></td<>                                                                                                                                                                        | 80 |                                                | kVA         | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 82       Under Apparent power [Stee]       kVA       0.1       1       3000       sec       1       1       3000 $\checkmark$ $\checkmark$ 83       Lagging power factor [PF1]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 84       Lagging power factor [PF2]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 85       Lagging power factor [PF3]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 86       Lagging power factor [PFa]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 87       Leading displacement PF [Cos $\varphi_1$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 88       Leading displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec <td< td=""><td>81</td><td>Under Apparent power [S<sub>3</sub>]</td><td>kVA</td><td>0.1</td><td>1</td><td>1000</td><td>sec</td><td>1</td><td>1</td><td>3000</td><td>_</td><td><math>\checkmark</math></td></td<>                                                                                                             | 81 | Under Apparent power [S <sub>3</sub> ]         | kVA         | 0.1              | 1                             | 1000                    | sec          | 1               | 1                             | 3000                      | _            | $\checkmark$ |
| 83       Lagging power factor [PF1]       -       0.01       0       0.99       sec       1       1       3000       - $$ 84       Lagging power factor [PF2]       -       0.01       0       0.99       sec       1       1       3000       - $$ 85       Lagging power factor [PF3]       -       0.01       0       0.99       sec       1       1       3000       - $$ 86       Lagging power factor [PFa]       -       0.01       0       0.99       sec       1       1       3000       - $$ 86       Lagging power factor [PFa]       -       0.01       0       0.99       sec       1       1       3000       - $$ 87       Leading displacement PF [Cosp1]       -       0.01       0       0.99       sec       1       1       3000       - $$ 88       Leading displacement PF [Cosp2]       -       0.01       0       0.99       sec       1       1       3000       - $$ 90       Leading displacement PF [Cosp4]       -       0.01       0       0.99       sec       1                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82 | Under Apparent power [Stot]                    | kVA         | 0.1              | 1                             | 3000                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ |              |
| 84       Lagging power factor [PF2]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 85       Lagging power factor [PF3]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 86       Lagging power factor [PF1]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 86       Lagging power factor [PF10]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 87       Leading displacement PF [Cosq1]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 88       Leading displacement PF [Cosq2]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF [Cosq3]       -       0.01       0       0.99       sec       1       1       3000 $\checkmark$ $\checkmark$ 91       Lagging displacement PF [Cosq4]       -       0.01       0       0.99       sec       1 <td>83</td> <td>Lagging power factor [PF1]</td> <td>_</td> <td>0.01</td> <td>0</td> <td>0.99</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td></td> <td></td>                                                                                                                                                                           | 83 | Lagging power factor [PF1]                     | _           | 0.01             | 0                             | 0.99                    | sec          | 1               | 1                             | 3000                      |              |              |
| 85       Lagging power factor [PF <sub>3</sub> ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 86       Lagging power factor [PF <sub>1ot</sub> ]       -       0.01       0       0.99       sec       1       1       3000 $\checkmark$ $\checkmark$ 87       Leading displacement PF [Cos $\varphi_1$ ]       -       0.01       0       0.99       sec       1       1       3000 $\checkmark$ $\checkmark$ 88       Leading displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 89       Leading displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 91       Lagging displacement PF [Cos $\varphi_1$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 92       Lagging displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99 <td>84</td> <td></td> <td>_</td> <td>0.01</td> <td>0</td> <td>0.99</td> <td>sec</td> <td>1</td> <td>1</td> <td>3000</td> <td>_</td> <td></td>                                                                                                          | 84 |                                                | _           | 0.01             | 0                             | 0.99                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 86       Lagging power factor [PF <sub>tot</sub> ]       -       0.01       0       0.99       sec       1       1       3000 $\checkmark$ $\checkmark$ 87       Leading displacement PF [Cos $\varphi_1$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 88       Leading displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 89       Leading displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 91       Lagging displacement PF [Cos $\varphi_{10}$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 92       Lagging displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 93       Lagging displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0                                                                                                                                                                                                                                                          | 85 |                                                | _           | 0.01             | 0                             | 0.99                    | sec          | 1               | 1                             | 3000                      | _            |              |
| 87       Leading displacement PF $[Cos\phi_1]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 88       Leading displacement PF $[Cos\phi_2]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 89       Leading displacement PF $[Cos\phi_3]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF $[Cos\phi_3]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF $[Cos\phi_{13}]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 91       Lagging displacement PF $[Cos\phi_{1}]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 92       Lagging displacement PF $[Cos\phi_{2}]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 93       Lagging displacement PF $[Cos\phi_{3}]$ -       0.01       0                                                                                                                                                                                                                                                                                                                                                        | 86 | Lagging power factor [PF <sub>tot</sub> ]      | _           | 0.01             | 0                             | 0.99                    | sec          | 1               | 1                             | 3000                      | $\checkmark$ |              |
| 88       Leading displacement PF $[Cos\phi_2]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 89       Leading displacement PF $[Cos\phi_3]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF $[Cos\phi_{3}]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF $[Cos\phi_{10}]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 91       Lagging displacement PF $[Cos\phi_{1}]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 92       Lagging displacement PF $[Cos\phi_{2}]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 93       Lagging displacement PF $[Cos\phi_{3}]$ -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 94       Lagging displacement PF $[Cos\phi_{10}]$ -       0.01       0 <td>-</td> <td></td> <td>_</td> <td></td> <td>0</td> <td></td> <td>sec</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                   | -  |                                                | _           |                  | 0                             |                         | sec          | 1               | 1                             |                           |              |              |
| 89       Leading displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 90       Leading displacement PF [Cos $\varphi_{1d}$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 91       Lagging displacement PF [Cos $\varphi_1$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 92       Lagging displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 92       Lagging displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 93       Lagging displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 94       Lagging displacement PF [Cos $\varphi_{1at}$ ]       -       0.01       0       0.99       sec       1       1       3000 $\checkmark$ $\checkmark$                                                                                                                                                                                                                                                                                                                                            | -  |                                                | _           | 0.01             |                               |                         |              | 1               | 1                             |                           | _            |              |
| 90         Leading displacement PF [Cos $\varphi_{tot}$ ]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ 91         Lagging displacement PF [Cos $\varphi_{1}$ ]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ $\checkmark$ 91         Lagging displacement PF [Cos $\varphi_{1}$ ]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ 92         Lagging displacement PF [Cos $\varphi_{2}$ ]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ 93         Lagging displacement PF [Cos $\varphi_{3}$ ]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ 94         Lagging displacement PF [Cos $\varphi_{1ot}$ ]          0.01         0         0.99         sec         1         1         3000 $\checkmark$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  |                                                | _           |                  |                               |                         |              | 1               |                               |                           | _            |              |
| 91       Lagging displacement PF [Cos $\varphi_1$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 92       Lagging displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 93       Lagging displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 94       Lagging displacement PF [Cos $\varphi_{101}$ ]       -       0.01       0       0.99       sec       1       1       3000 $\checkmark$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                | _           |                  |                               |                         |              | 1               |                               |                           | $\checkmark$ |              |
| 92       Lagging displacement PF [Cos $\varphi_2$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 93       Lagging displacement PF [Cos $\varphi_3$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$ 94       Lagging displacement PF [Cos $\varphi_{tot}$ ]       -       0.01       0       0.99       sec       1       1       3000       - $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                                                | _           |                  |                               |                         |              |                 |                               |                           |              |              |
| 93         Lagging displacement PF [Cosφ <sub>3</sub> ]         -         0.01         0         0.99         sec         1         1         3000         -         ✓           94         Lagging displacement PF [Cosφ <sub>1ot</sub> ]         -         0.01         0         0.99         sec         1         1         3000         ✓         ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                | _           |                  | 0                             |                         |              | 1               |                               |                           | _            |              |
| 94         Lagging displacement PF [Cosφ <sub>tot</sub> ]         -         0.01         0         0.99         sec         1         1         3000         ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -  |                                                | _           |                  |                               |                         |              | 1               |                               |                           | _            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                                                | _           |                  |                               |                         |              | 1               |                               |                           | $\checkmark$ |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95 | Over THD Current [THDI <sub>1</sub> ]          | _           | 0.1%             | 0%                            | 1000%                   | sec          | 1               | 1                             | 3000                      | $\checkmark$ | $\checkmark$ |





| ID  | Name                                                       |      | k-up or D | Prop-out thresh | old value  | Pick | -up or [ | Drop-out time o | delay value | 3Ph          | 3Ph+N        |
|-----|------------------------------------------------------------|------|-----------|-----------------|------------|------|----------|-----------------|-------------|--------------|--------------|
| U   |                                                            | Unit | Res       | Min. value      | Max. value | Unit | Res      | Min. value      | Max. value  | 3511         |              |
| 96  | Over THD Current [THDI <sub>2</sub> ]                      | -    | 0.1%      | 0%              | 1000%      | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 97  | Over THD Current [THDI <sub>3</sub> ]                      | -    | 0.1%      | 0%              | 1000%      | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 98  | Over THD Voltage [THDV <sub>1N</sub> ]                     | -    | 0.1%      | 0%              | 1000%      | sec  | 1        | 1               | 3000        | _            | $\checkmark$ |
| 99  | Over THD Voltage [THDV <sub>2N</sub> ]                     | -    | 0.1%      | 0%              | 1000%      | sec  | 1        | 1               | 3000        | _            | $\checkmark$ |
| 100 | Over THD Voltage [THDV <sub>3N</sub> ]                     | -    | 0.1%      | 0%              | 1000%      | sec  | 1        | 1               | 3000        | -            | $\checkmark$ |
| 101 | Over THD Voltage [THDU12]                                  | -    | 0.1%      | 0%              | 1000%      | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 102 | Over THD Voltage [THDU23]                                  | -    | 0.1%      | 0%              | 1000%      | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 103 | Over THD Voltage [THDU31]                                  |      | 0.1%      | 0%              | 1000%      | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 104 | Over frequency [F]                                         | Hz   | 0.01      | 45              | 65         | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 105 | Under frequency [F]                                        | Hz   | 0.01      | 45              | 65         | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 106 | Over Current demand [I1 Dmd]                               | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 107 | Over Current demand [I2 Dmd]                               | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 108 | Over Current demand [I <sub>3 Dmd</sub> ]                  | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 109 | Over Current demand [I <sub>N Dmd</sub> ] (*4P MCCB Only)  | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | -            | √*           |
| 110 | Over Current demand [Iavg Dmd]                             | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 111 | Under Current demand [I1 Dmd]                              | Α    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 112 | Under Current demand [I <sub>2 Dmd</sub> ]                 | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 113 | Under Current demand [I <sub>3 Dmd</sub> ]                 | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 114 | Under Current demand [I <sub>N Dmd</sub> ] (*4P MCCB Only) | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | -            | √*           |
| 115 | Under Current demand [lavg Dmd]                            | А    | 0.1       | 8               | 6300       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 116 | Over Active power demand [Ptot Dmd]                        | kW   | 0.1       | 1               | 3000       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 117 | Under Active power demand [Ptot Dmd]                       | kW   | 0.1       | 1               | 3000       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 118 | Over Reactive power demand [Qtot Dmd]                      | kVAr | 0.1       | 1               | 3000       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 119 | Under Reactive power demand [Qtot Dmd]                     | kVAr | 0.1       | 1               | 3000       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 120 | Over apparent power demand [Stot Dmd]                      | kVA  | 0.1       | 1               | 3000       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 121 | Under apparent power demand [Stot Dmd]                     | kVA  | 0.1       | 1               | 3000       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 122 | Operating quadrant 1 (P>0, Q>0)                            | -    | _         | 1               | 1          | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 123 | Operating quadrant 2 (P<0, Q>0)                            | _    | _         | 2               | 2          | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 124 | Operating quadrant 3 (P<0, Q<0)                            | _    | _         | 3               | 3          | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 125 | Operating quadrant 4 (P>0, Q<0)                            | _    | _         | 4               | 4          | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 126 | Phase sequence 1->2->3                                     | _    | _         | 0               | 0          | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 127 | Phase sequence 1->3->2                                     | -    | _         | 1               | 1          | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 128 | Operating quadrant 2 or 4 (Capacitive)                     | -    | _         | 0               | 0          | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 129 | Operating quadrant 1 or 3 (Inductive)                      | _    | —         | 1               | 1          | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |
| 130 | Leading Power factor PF1                                   | _    | 0.01      | 0               | 0.99       | sec  | 1        | 1               | 3000        | _            | $\checkmark$ |
| 131 | Leading Power factor PF2                                   | _    | 0.01      | 0               | 0.99       | sec  | 1        | 1               | 3000        | -            | $\checkmark$ |
| 132 | Leading Power factor PF3                                   | _    | 0.01      | 0               | 0.99       | sec  | 1        | 1               | 3000        | _            | $\checkmark$ |
| 133 | Leading Power factor PFtot                                 | _    | 0.01      | 0               | 0.99       | sec  | 1        | 1               | 3000        | $\checkmark$ | $\checkmark$ |





### **OAC (Optional Alarm Contact)**

The OAC is an optional alarm which can be assigned with one of several types of alarms. When the assigned alarm is activated, the alarm will display on the P\_SE embedded display. The OAC also has a physical contact which closes with the activation of the OAC alarm. Refer to the Optional Alarms List for the list of available OAC alarm assignments.



**Notice**: The use of the OAC physical contact requires the connection of the OAC/PTA cable to the OAC port located under the front cover of the P\_SE MCCB. Refer to the <u>Connection Cables</u> section for details on the OAC/PTA cable.

The OAC is configurable by assigning it an alarm type (assignment), and the contact behaviour (reset mode), which can made using one or a combination of the below methods:

- TPED
- TPCM

The physical contact mode is defined as either Auto-reset mode, or latching mode:

Auto-reset mode: Contact will remain CLOSED for up to 500ms after the alarm deactivates, at which point it will OPEN automatically.

Latching mode: Contact will remain CLOSED after the alarm deactivates, until the alarm is cleared via the P\_SE embedded display or the TPED where used.



**Notice**: In the event that PTA (Pre trip alarm) is assigned to OAC, the contact operation mode is forced to autoreset mode, where the contact will OPEN up to 500ms after the PTA is no longer active.

| TPED setting                                                          | TPCM setting                                                                                                    | Default              |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|
| "Assignment"<br>(Refer <u>Optional Alarms List</u> )                  | Command ID: 117 "Optional Alarm assignment setting"<br>(Refer Optional Alarms List)                             | PTA (Pre trip Alarm) |
| "Reset mode"<br>Automatic: Auto-reset mode<br>Latching: Latching mode | Command ID: 116 "Optional Alarm contact operation mode setting"Hex 00 00:Auto-reset modeHex 00 01:Latching mode | Auto-reset mode      |

#### **Optional alarms List**

| ID | TPCM<br>holding register value (hex) | Custom Alarm Assignment               | Remark     |
|----|--------------------------------------|---------------------------------------|------------|
| 0  | 00 00                                | None                                  |            |
| 1  | 00 01                                | High Trip Unit internal temperature   |            |
| 2  | 00 02                                | Neutral monitoring wire disconnection | 3Ph+N Only |
| 3  | 00 03                                | Trip Unit self-test failure           |            |
| 4  | 00 04                                | Reserved                              |            |
| 5  | 00 05                                | PTA (Pre trip alarm)                  |            |
| 6  | 00 06                                | Custom Alarm 1                        |            |
| 7  | 00 07                                | Custom Alarm 2                        |            |
| 8  | 00 08                                | Custom Alarm 3                        |            |
| 9  | 00 09                                | Custom Alarm 4                        |            |
| 10 | 00 0A                                | Custom Alarm 5                        |            |
| 11 | 00 0B                                | Custom Alarm 6                        |            |
| 12 | 00 0C                                | Custom Alarm 7                        |            |
| 13 | 00 0D                                | Custom Alarm 8                        |            |
| 14 | 00 0E                                | Custom Alarm 9                        |            |
| 15 | 00 0F                                | Custom Alarm 10                       |            |
| 16 | 00 10                                | Custom Alarm 11                       |            |
| 17 | 00 11                                | Custom Alarm 12                       |            |





# Date & Time

There are two types of Date & Time accessible from the Trip Unit of the MCCB and which are used as timestamp of trips, alarms, and events, and which are affected by the presence of supply or control power to the Trip Unit.

Trip Unit Time:

ime: Non-resettable time which is the absolute operating time of the Trip Unit seconds. Trip Unit time increments whilst the Trip Unit is in service and is stored in the Trip Unit non-volatile memory. Trip Unit time does not increment if power is removed from the Trip Unit.

User Time:

Resettable time which is configurable by the user locally via the P\_SE Trip Unit embedded display, or remotely via TPED or TPCM. This time is displayed on the P\_SE Trip Unit embedded display. Unlike the Trip Unit time, however, the User Time is stored in volatile memory, and is cleared back to 1<sup>st</sup> January 2000, 00:00:00 if power is removed from the Trip Unit.



**Notice**: where accuracy of timestamps are critical (e.g. for alarm history and logging), it is recommended that the Trip Unit is supplied with an uninterruptable external power supply. This is such that disconnection of incoming supply does not remove power from the Trip Unit and reset the User Time and cease upkeep of Trip Unit time.

On the embedded display of the MCCB, the date and time is represented in the format DD/MM/YYYY (or YYYY/MM/DD depending on settings) and HH:MM (24H or AM/PM depending on settings).







# History

The P\_SE Trip Unit has an internal memory to enable the following logs to be stored:

- Trip alarm log (up to 10 most recent events)
- Custom alarm log (up to 40 most recent events)
- Log of changes to the protection settings (up to 5 most recent events per protection parameter)

These logs are updated internal to the Trip Unit after each event.



**Notice**: Historical logs are only visible using the TPED or TPCM, however, the P\_SE Trip Unit will still monitor and log any prior configured alarms and setting changes without either TPED or TPCM connected.

Upon reconnection to a TPED or TPCM, the respective alarm history logs will be populated and can be accessed.

### **Trip Alarm Log**

Trip alarms for the 10 most recent trips events are accessible using one or a combination of the below methods:

- TPED
- TPCM

Each trip alarm log is stored with the following information with respect to the alarm type:

| Trip alar | m type               | Timestam       | p of alarm   | Fault        | details      | Notes        |
|-----------|----------------------|----------------|--------------|--------------|--------------|--------------|
| Trip ID   | Description          | Trip Unit time | User Time    | Duration     | Current      |              |
| 1         | LTD trip on Phase 1  | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 2         | LTD trip on Phase 2  | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 3         | LTD trip on Phase 3  | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 4         | LTD trip on Neutral  | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ | 4P MCCB Only |
| 5         | STD trip on Phase 1  | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 6         | STD trip on Phase 2  | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 7         | STD trip on Phase 3  | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 8         | STD trip on Neutral  | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ | 4P MCCB Only |
| 9         | GF trip              | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 10        | INST trip on Phase 1 | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 11        | INST trip on Phase 2 | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 12        | INST trip on Phase 3 | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| 13        | INST trip on Neutral | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$ | 4P MCCB Only |

#### **Custom Alarm Log**

Trip alarms for the 10 most recent trips events are accessible using one or a combination of the below methods:

- TPED

- TPCM

Each trip alarm log is stored with the following information with respect to the alarm type:

| Custom alarm type |                        | Timestamp of alarm |              | Alarm activated / deactivated | Notes |
|-------------------|------------------------|--------------------|--------------|-------------------------------|-------|
| Alarm ID          | Description            | Trip Unit<br>time  | User Time    |                               |       |
| 1133              | See Custom alarms list | $\checkmark$       | $\checkmark$ | $\checkmark$                  |       |



# History



### **Protection Setting Changes Log**

Changes to the protection settings are logged for the 5 most recent changes for each setting type are accessible using one or a combination of the below methods:

- TPED - TPCM

Each protection setting changes log is stored with the following information with respect to the protection setting type:

| Previous setting type                     |                 | Timestam          | o of change  | Notes          |
|-------------------------------------------|-----------------|-------------------|--------------|----------------|
| Description                               | Symbol          | Trip Unit<br>time | User time    |                |
| LTD current                               | l <sub>r</sub>  | $\checkmark$      | $\checkmark$ |                |
| LTD time delay                            | tr              | $\checkmark$      | $\checkmark$ |                |
| STD enable / disable                      | —               | $\checkmark$      | $\checkmark$ |                |
| STD current                               | I <sub>sd</sub> | $\checkmark$      | $\checkmark$ |                |
| STD time delay                            | t <sub>sd</sub> | $\checkmark$      | $\checkmark$ |                |
| I <sup>2</sup> t for STD enable / disable | —               | $\checkmark$      | $\checkmark$ |                |
| INST current                              | li              | $\checkmark$      | $\checkmark$ |                |
| GF enable / disable                       | -               | $\checkmark$      | $\checkmark$ |                |
| GF current                                | lg              | $\checkmark$      | $\checkmark$ |                |
| GF time delay                             | tg              | $\checkmark$      | $\checkmark$ |                |
| l <sup>2</sup> t for GF enable / disable  | —               | $\checkmark$      | $\checkmark$ |                |
| NP enable / disable                       | -               | $\checkmark$      | $\checkmark$ | 4P MCCB only   |
| N Coefficient                             | x Ir            | $\checkmark$      | $\checkmark$ | 4P MCCB only   |
| ZSI for STD enable / disable              | -               | $\checkmark$      | $\checkmark$ | Excluding P160 |
| ZSI for GT enable / disable               | _               | $\checkmark$      | $\checkmark$ | Excluding P160 |



# Write Protection

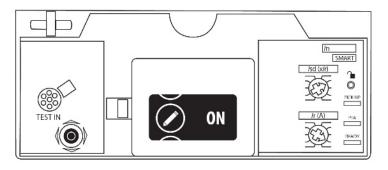




**WARNING**: Changes and adjustments to protection settings and levels (either local or remotely) should only be performed by qualified personnel. Failure to comply may result in malfunction or damage of protective equipment, serious injury or death.

Modifications made remotely over communications to the MCCB configuration settings may be dangerous for personnel near the circuit breaker or may cause damage to the equipment if the protection parameters are modified.

Therefore, remote data write commands are secured with two levels of protection:


- Remote Write Authorization parameter at the MCCB for localized locking out of individual circuit breakers from remote writing access.
- Password Management with various security access levels for limiting accessibility of performing certain write commands.

### **Remote Write Authorization**

To permit writing of data to the MCCB via remote devices (i.e. external to the MCCB, such as TPCM, TPED, etc.), the remote write authorization parameter must be enabled on the MCCB via the embedded LCD display menu.

This parameter is enabled via the Configuration menu of the embedded display by navigating to the Remote Write Authorization symbol as shown below and changing the value to "ON".

Refer to the Navigation section for further information on navigating the embedded display.



| Remote Write Authorization                                                                                                            | Default setting |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| ON – OFF                                                                                                                              | ON              |
| ON – enabled, data write commands for remote devices permitted.<br>OFF – disabled, data write commands for remote devices prohibited. |                 |



# Write Protection

### **Password Management**

Changes to certain configuration settings are protected by varying security access levels. A password corresponding to the required security level must be used when writing data to the TPCM.

Refer to the TemCom PRO User Manual for more information on remote writing and reading of data over Modbus communications.

Security access levels and their default passwords are as follows:

| Security Access Level | Classification                                                                                                                           | Default Password |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0                     | Settings that do not cause damage even if the settings are incorrect.<br>No password required.                                           | N/A              |
| 1                     | Settings that can cause undesired operation or malfunction if settings are incorrect.<br>Level 1 or Level 2 password required            | "Level1"         |
| 2                     | Settings that can cause damage of protective equipment, serious injury or death if settings are incorrect.<br>Level 2 password required. | "Level2"         |

### **Changing the Password**



**WARNING**: Level 1 and Level 2 passwords should be changed during commissioning to prevent unauthorized modification to protected settings.

Password changes are performed using the Writing Data process with Command ID: 2001.

The new password must be between 4 and 8 characters inclusive; and may consist of a combination of alphabetic and numerical characters (A-Z, a-z, 0-9, case-sensitive, no special symbols or characters).

- The Level 1 password can be modified with security access level 1 or 2.
- The Level 2 password can only be modified with security access level 2.



**WARNING**: If the Level 2 password is lost, it can only be reset or restored via authorised service and maintenance tools via the Maintenance Interface Port. Contact NHP for information on restoring lost passwords.





# Trip Unit Power Supply

The P\_SE Trip Unit requires auxiliary power supply to operate and provide measurement, alarm, and configured protection functions. Auxiliary power to the Trip Unit is self-powered whilst sufficient current is flowing through the MCCB, but can also be supplied via external 24V dc power supply for uninterrupted functionality.

### Self-power requirements

Minimum conditions for energizing the Trip Unit without an external power supply:

- Circuit breaker closed
- Minimum current through the circuit breaker; below is a table per rating

| Trip Unit rating | 1 Pole fed | 2 Poles fed | 3 Poles fed |
|------------------|------------|-------------|-------------|
| 40A              | _          | > 14A       | > 10A       |
| 100A             | > 25A      | > 15A       | > 15A       |
| 160A             | > 32A      | > 16A       | > 16A       |
| 250A             | > 50A      | > 25A       | > 25A       |
| 400A             | > 80A      | > 40A       | > 40A       |
| 630A             | > 126A     | > 63A       | > 63A       |



**Notice**: 40A Trip Unit with 1 Pole feed, will still provide INST protection for  $I > 2x I_n$  (>80A).

#### External 24V dc supply requirements

An external 24 Vdc supply may be used for uninterrupted functionality of the Trip Unit whilst the MCCB contacts are open, or where there is insufficient current to provide the minimum requirements for self-power.

The external 24V dc power supply must be capable of delivering the necessary maximum current of the Trip Unit and any connected accessories.

| Trip Unit / accessories | Current consumption @ 24V dc nominal |
|-------------------------|--------------------------------------|
| P_SE Trip Unit          | 60 mA                                |
| TPED                    | 85 mA                                |
| TPCM                    | 40 mA                                |

The external 24 Vdc supply is connected to the circuit breaker in two ways:

- Direct connection to MCCB with via CIP adapter cable TPPHQTT140H (P160 / P250), or TPPHQTT160H (P400 / P630)
- Connection via the TPCM provided power supply.





# **Trip Unit Power Supply**

### External 24V dc supply instructions – CIP adapter cable

Below are the steps for direct connection of power supply to the Trip Unit with via CIP adapter cable:

- TPPHQTT140H (P160 / P250), or
- TPPHQTT160H (P400 / P630).

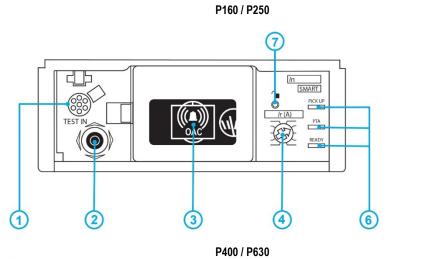
WARNING: Local wiring rules shall be respected (e.g. AS/NZS 3000: Wiring Rules) and shall provide: - Separation of the power cables and ELV / communication cables

- Secure the cable along the routing.

|   | Action                                                                                           | Note / Illustration |
|---|--------------------------------------------------------------------------------------------------|---------------------|
| 1 | Switch the MCCB to the OFF or TRIP position.                                                     |                     |
| 2 | Using a No.2 Phillips screwdriver, unlock the front cover by rotating the lock counter-clockwise |                     |
| 3 | Open the front cover of the MCCB                                                                 |                     |



# Trip Unit Power Supply




|   | Action                                                                                                                                                                                                                                                                         | Note / Illustration                                                                                                                                                 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Insert the CIP connector for the CIP adapter in one of<br>the connectors marked CIP inside the circuit breaker on<br>the left-hand side.<br>Route the cable for the CIP adapter along the left-hand<br>side cable channel of the circuit breaker provided for this<br>purpose. |                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                | Respect the direction of insertion for the connector:<br>The adapter part marked CIP must be visible from the front. Avoid forcing the<br>connector when inserting. |
| 5 | Close the front cover of the MCCB                                                                                                                                                                                                                                              |                                                                                                                                                                     |
| 6 | Using a No.2 Phillips screwdriver, lock the front cover by rotating the lock clockwise                                                                                                                                                                                         |                                                                                                                                                                     |
| 7 | Terminate the other end of the CIP adapter cable to 24V dc power supply terminals.                                                                                                                                                                                             | Brown wire +24V dc<br>White wire 0V dc                                                                                                                              |



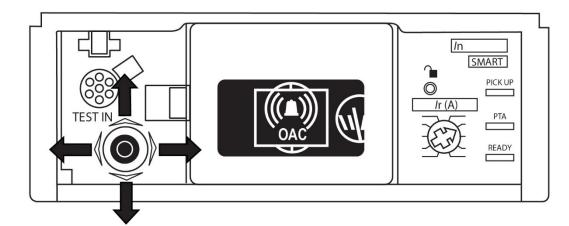
# Navigation

### P\_SE Trip Unit Overview



In SMART -7 TEST IN PICK UP Ĩ /r (A) ٦ PTA Ś READ 1 5 4 6 2 3

| Operation key |                                    |  |
|---------------|------------------------------------|--|
| 1             | MIP Port                           |  |
| 2             | SMART Trip Unit Joystick           |  |
| 3             | Embedded Display                   |  |
| 4             | I <sub>r</sub> Coarse Setting Dial |  |
| 5             | I₅d Coarse Setting Dial            |  |
| 6             | LED Indication                     |  |
| 7             | Unlock Button                      |  |



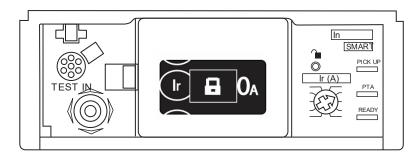



## Navigation

### **Principles of Navigation**

The menu navigation and selection is performed using the joystick on the left side Trip Unit display.




| Button Action | Description                                                              |
|---------------|--------------------------------------------------------------------------|
| <b>* *</b>    | Navigation between main menus:                                           |
| <b>1</b> ↓    | Navigation within a submenu                                              |
| 0             | Selection / Entering / validation of a setting, by pressing the joystick |

### Locking / Release Button

By default, changing P\_SE Trip Unit protection settings are protected via a locking function. Navigation of general monitored data is still possible on locked Trip Units. The lock prevents unauthorised access to changes to the following Trip Unit settings and functions:

- Altering Protection Settings
- Reset or change of measurement statistics
- Return to factory settings
- Modification of the remote data write locking parameter

Attempting to use the joystick from a locked Trip Unit causes the screen to display a padlock indicating the active lock.



There are two ways to unlock access:

- By using the Ir max adjustment dial
- By pressing the unlock button.

To unlock the P\_SE Trip Unit in order to modify the settings, the transparent cover will need to be opened to access the unlock button or max Ir adjustment dial.

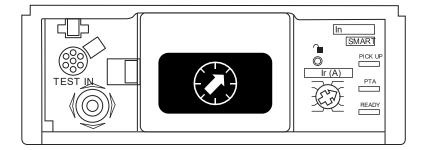


Navigation





# Navigation


### **Navigation Menus**



The embedded display provides access to P\_SE Trip Unit settings and measurement viewing and status via 4 main menus:

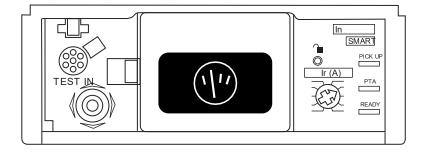
| Protection | Measurement | Configuration | Information |
|------------|-------------|---------------|-------------|
|            | (1)         | <b>()</b>     | i           |

### **Protection Setting Menu**



The protection menu consists of sub-menus to view and edit each Trip Unit protection setting.

Refer to the <u>Protection Settings</u> section for more details on each of the available protection setting parameters and their adjustments via the P\_SE Trip Unit embedded display and dials where required.


Pressing the joystick down on the Protection Setting menu allows scrolling through and viewing of the following parameters and options

|                                 | Threshold Adjustment | Time Setting           | Other Settings |
|---------------------------------|----------------------|------------------------|----------------|
| LTD – Long-time protection      | lr                   | tr                     |                |
| STD – Short-time protection     | lsd                  | tsd (l <sup>2</sup> t) | ZSI            |
| INST – Instantaneous protection | li                   |                        |                |
| GF – Ground fault protection    | lg                   | tg (l <sup>2</sup> t)  | ZSI            |
| NP – Neutral protection         |                      |                        |                |

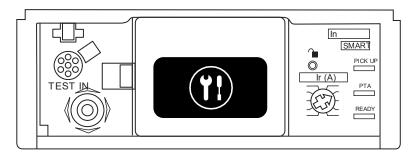


## Navigation

### **Measurement Menu**



The measurement menu is where you can view measurements and set favourites for screen saver. Refer to the <u>Measurements and Settings</u> section for more details on the measurements available on the P\_SE Embedded display


Pressing the joystick down on the Measurements menu allows scrolling through and viewing of the following parameters and options.

| Measurement                             | Designator / Description                                                                                             | Notes                                    |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Phase and neutral current               | I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub> ; I <sub>N</sub>                                                    | I <sub>N</sub> available on 4P MCCB only |
| Ground / Earth current                  | lg                                                                                                                   |                                          |
| Maximum current since last reset        | Max. of each I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub> ; I <sub>N</sub> , I <sub>max</sub> , I <sub>min</sub> |                                          |
| Phase-phase voltage                     | U <sub>12</sub> , U <sub>23</sub> , U <sub>31</sub>                                                                  |                                          |
| Phase to neutral voltage                | V1N, V2N, V3N                                                                                                        | 3Ph+N only                               |
| Maximum Ph-Ph voltage since last reset  | Max. of each U12, U23, U31, Umax, Umin                                                                               |                                          |
| Maximum Ph-N voltage since last reset   | Max. of each V1N, V2N, V3N, Vmax, Vmin                                                                               | 3Ph+N only                               |
| Phase rotation (sequence)               | 1-2-3, 1-3-2                                                                                                         |                                          |
| Frequency                               | f                                                                                                                    |                                          |
| Active power                            | P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , P <sub>tot</sub>                                                  |                                          |
| Reactive power                          | Q1, Q2, Q3, Qtot                                                                                                     |                                          |
| Maximum active power since last reset   | Max. of each P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , P <sub>tot</sub>                                     |                                          |
| Maximum reactive power since last reset | Max. of each Q <sub>1</sub> , Q <sub>2</sub> , Q <sub>3</sub> , Q <sub>tot</sub>                                     |                                          |
| Total Displacement Power Factor         | Cosφ <sub>tot</sub>                                                                                                  |                                          |
| Energy consumed                         | E <sub>a In</sub> , E <sub>r In</sub>                                                                                |                                          |



# Navigation

### Setup Menu

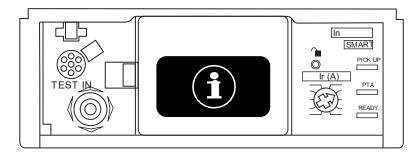


The Setup menu consists of sub-menus to view and change Trip Unit embedded display settings for:

- Date & Time
- Display Orientation and Brightness
- Standby mode.
- Reset the maximum measurement values.
- Return to factory settings.
- Permission to remotely write data

Pressing the joystick down on the Setup menu allows scrolling through and viewing of the following parameters and options

| Parameter                                                 | Symbol        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time setting using the menu                               |               | Trip Unit time settings can be adjusted using this menu – this setting constitutes the time portion of the User time. It is also possible to set the date and time using the TPED or TPCM. Refer to <u>Date &amp; Time</u> section.                                                                                                                                                                                                                                                                                                                                                          |
| Date setting using the menu                               |               | Trip Unit date settings can be adjusted using this menu – this setting constitutes the date portion of the User time. It is also possible to set the date and time using the TPED or TPCM. Refer to <u>Date &amp; Time</u> section.                                                                                                                                                                                                                                                                                                                                                          |
| Viewing orientation setting using the menu                | $( \exists )$ | A user can rotate the screen display in four directions: up, down, left or right.<br>The display contents are automatically optimised based on the orientation for maximum readability<br>regardless of orientation.                                                                                                                                                                                                                                                                                                                                                                         |
| Menu Brightness adjustment                                |               | The brightness can be adjusted to 20%, 40%, 60%, 80% or 100% (60% by default).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sleep / Standby setting using the menu                    |               | <ul> <li>When Sleep mode is activated, the display switches off after 5 minutes if there is no movement of the Trip Unit joystick. Standby mode is enabled by default and can be disabled.</li> <li>If the joystick is pressed within 15 minutes after activation of the screen going into sleep mode, the last view before sleep mode will be displayed. Otherwise, the display will move to the Main menu view.</li> <li>The output of the standby mode is caused by one of the following events: <ul> <li>Joystick movement</li> <li>A message alarm notification.</li> </ul> </li> </ul> |
| Resetting maximum<br>measurement values using the<br>menu | MAX           | This submenu allows a user to reset the stored maximum values of currents, voltages, and power. This reset control is not only for maximum value reset, also for resetting of the energy counters.                                                                                                                                                                                                                                                                                                                                                                                           |
| Return to factory settings using the menu                 |               | This menu allows the user to reset the settings accessible from the P_SE Trip Unit embedded display.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Authorisation for remote writing data using the menu      |               | This submenu allows the user to enable or disable authorisation to write data to the Trip Unit remotely via the TPED or TPCM. By factory default, remote write authorisation is enabled (set to ON).                                                                                                                                                                                                                                                                                                                                                                                         |




**Notice**: Restoring to factory settings only affects parameters which are configurable using the P\_SE Trip Unit embedded display. Other parameters which are configurable via remote accessories such as the TPED and TPCM are not restored to their default settings using this method.



# Navigation

### Information Menu

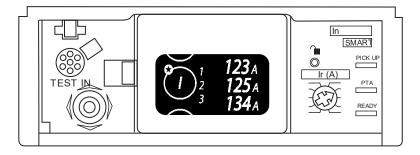


Pressing the joystick down on the Information menu allows scrolling through and viewing of the following parameters and options:

| Parameter    | Symbol | Description                                                                          |
|--------------|--------|--------------------------------------------------------------------------------------|
| Trip History |        | Information on the last trip cause – Refer to Last Trip section for more information |
| AX           | AX     | Number of operating cycles opening / closing                                         |
| AL           | AL     | Number of electromechanical fault trips                                              |



**Notice**: AX and AL cycle counters are only available when the SMART Auxiliary accessory is installed in the MCCB. Otherwise, these values will display as 0.


Refer to the SMART Auxiliary AX / AL Status Indicator section





# Navigation

### Sleep / Standby



After 30 seconds of inactivity (no movement of the joystick), the embedded display will enter Standby mode, whereby it will automatically scroll through a loop of favourited measurements every 3 seconds.

Refer Setting Favourites section for information on how to set favourite measurements to be displayed in Standby mode.

If Sleep mode is activated from the information menu, the display switches off after 5 minutes of inactivity.

If the joystick is pressed within 15 minutes after activation of the screen going into sleep mode, the last view before sleep mode will be displayed. Otherwise, the display will move to the Main menu view.



**Notice**: If less than 2 favourites are selected, the display first actives Sleep / Standby mode after 30 seconds and then turns off after 5 minutes, regardless of Sleep /Standby mode is disabled.







At first start-up, before being able to access the various menus, the embedded display will prompt the user to set the orientation, brightness and Standby mode. These settings can be confirmed using the joystick on the left-hand side of the display.

Once the correct setting has been selected, press the joystick to confirm the setting and move on to the next screen.

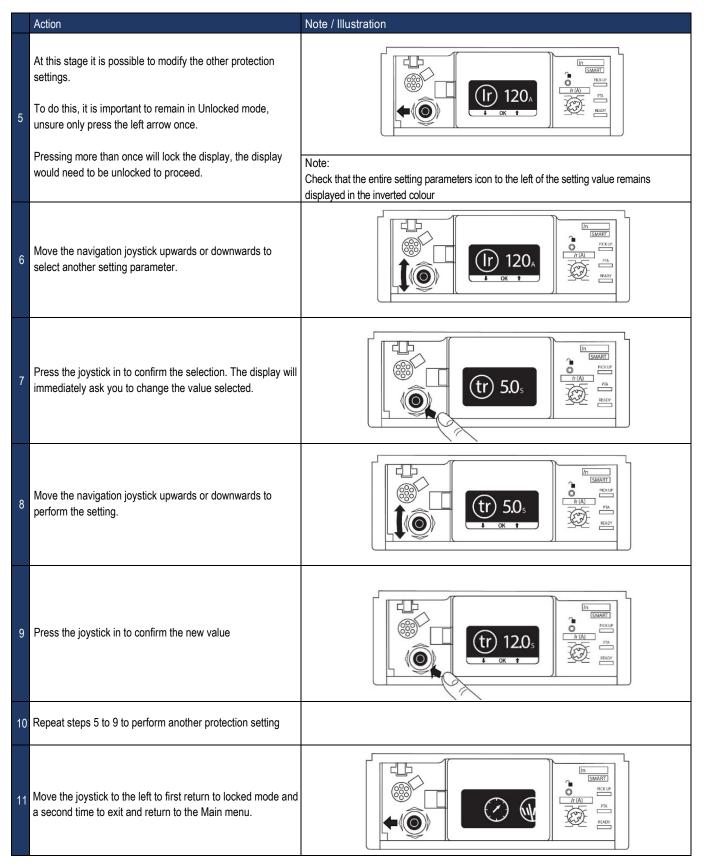
After these three settings are confirmed, the Main menu is displayed.

|   | Action              |                                                                                  | Note / Illustration |  |
|---|---------------------|----------------------------------------------------------------------------------|---------------------|--|
|   | Orient              | ation of the display                                                             |                     |  |
| 1 | A                   | Push the joystick upwards or downwards to select the orientation of the display. |                     |  |
|   | ₿                   | Press the joystick in to confirm the choice                                      |                     |  |
|   | Setting             | the screen brightness                                                            |                     |  |
| 2 | A                   | Push the joystick upwards or downwards to select the brightness.                 |                     |  |
|   | ₿                   | Press the joystick in to confirm the choice                                      |                     |  |
|   | Activat             | ting/deactivating Standby mode                                                   |                     |  |
| 3 | A                   | Push the joystick upwards or downwards to activate/deactivate Standby mode.      |                     |  |
| 5 | ₿                   | Press the joystick in to confirm the choice                                      |                     |  |
|   | Naviga              | ation through the main menus                                                     |                     |  |
| 4 | After ti<br>display | nese three settings are confirmed, the Main menu is<br>/ed.                      |                     |  |





### LTD Protection Adjustments (Ir, tr)




**WARNING**: Risk of nuisance tripping. Only qualified personnel are to set the protection levels. Failure to respect these instructions may cause death, serious injuries or equipment damage.

### After having set the display, the $I_r$ max setpoint and $I_r$ current should be set as follows:

|   | Action                                                                                                          | Note / Illustration                                                                                                                                                |
|---|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Turn the MCCB to the OFF Position<br>Open the transparent flap in order to access the max Ir<br>adjustment dial | 10FF                                                                                                                                                               |
| 2 | Using a PH1, PH2 or PZ2 size screwdriver, rotate the Ir1<br>adjustment dial to the maximum scale value of Ir.   | Note:<br>The display automatically switches to Unlocked mode and asks you to modify the<br>Ir value. The Ir value, and icon is then displayed in inverted colours. |
| 3 | Push the navigation joystick down for fine adjustment of the value Ir.                                          |                                                                                                                                                                    |
| 4 | Press the joystick in to confirm new value.                                                                     |                                                                                                                                                                    |

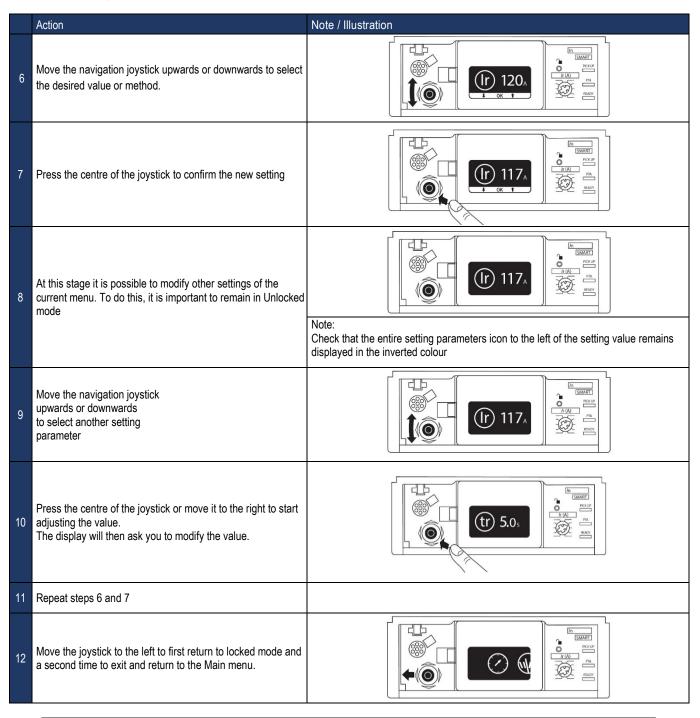






### Navigation and Settings After the First Setup

After setting the max  $I_{\rm r}$  setpoint (I\_r dial), it is necessary to:


- Set the other protection parameters for the circuit breaker
- Set the Trip Unit clock

Below uses Ir as an example for setting all other protection settings. Refer to Protection Settings section for more information in additional settings.

|   | Action                                                                                                                            | Note / Illustration                                                                                                                                                          |
|---|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Open the transparent flap in order to access the unlock<br>button.                                                                |                                                                                                                                                                              |
| 2 | Move the joystick to the left or right to select the menu<br>(Protection or Configuration)<br>containing the parameter to be set. |                                                                                                                                                                              |
| 3 | Press the centre of the joystick to access the menu.                                                                              |                                                                                                                                                                              |
| 4 | Move the joystick upwards or downwards to select the parameter to be set.                                                         |                                                                                                                                                                              |
| 5 | Briefly press the unlock button using a rounded tip such as a ballpoint pen.                                                      |                                                                                                                                                                              |
|   |                                                                                                                                   | Note:<br>The embedded display automatically switches to Unlocked mode. The parameter<br>icon found to the left of the value to be set is then displayed in inverted colours. |









**Notice**: If there is no movement on the navigation joystick for more than 30 seconds, Locked mode is automatically activated again.





### Accessing Measurements

Refer to the Measurements and Settings section for more details on the measurements available on the P\_SE Embedded display

|   | Action                                                                                                                      | Note / Illustration |
|---|-----------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1 | Move the joystick to the right to select the Measurements menu.<br>Then press the joystick to access the Measurements menu. |                     |
| 2 | Move the navigation joystick downwards or upwards to view the available measurements.                                       |                     |
| 3 | Move the joystick to the left to return to the Main menu.                                                                   |                     |



### Commissioning

### **Setting Favourites**

Default Display Favourites are deactivated by default. To manage favourites, proceed as follows:

|   |   | Action                                                                                                                                                                        | Note / Illustration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1 | Move the joystick to the right to select the Measurements menu.<br>Then press the joystick to access the Measurements menu.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| : | 2 | Move the navigation joystick downwards to select the view to be set as the favourite.                                                                                         | I 82A<br>I |
| : | 3 | Briefly press the centre of the joystick to confirm the selection.<br>A star appears on the measurements icon to confirm the<br>validation.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 4 | Repeat steps 2 and 3 to add other favourites.                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| : | 5 | To delete a favourite briefly press the centre of the joystick on a view confirmed as a favourite.<br>The star disappears on the measurements icon to confirm the validation. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 6 | Move the joystick to the left to return to the Main menu.                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





### Commissioning

### Accessing Setup Settings

Default Display Favourites are deactivated by default. To manage favourites, proceed as follows:

|   | Action                                                                                                           | Note / Illustration |
|---|------------------------------------------------------------------------------------------------------------------|---------------------|
| 1 | Move the joystick to the right to select the Setup menu.<br>Then press the joystick in to access the Setup menu. |                     |
| 2 | Move the navigation joystick upwards or downwards to view the available settings.                                |                     |
| 3 | Briefly press the centre of the joystick to confirm the selection.                                               |                     |
| 4 | Move the navigation joystick upwards or downwards to change the setting.                                         |                     |
| 5 | Briefly press the centre of the joystick to confirm the setting.                                                 |                     |
| 6 | Repeat steps 2, 3 and 4 to change other settings.                                                                |                     |
| 7 | Move the joystick to the left to return to the Main menu.                                                        |                     |





# Commissioning

| Settings               | lcon               | Available                                             | Settings                     | Default | Unlock Required |
|------------------------|--------------------|-------------------------------------------------------|------------------------------|---------|-----------------|
| Time                   | (!                 | Hours / Minutes                                       | / Minutes AM / PM            |         | NO              |
| Date                   |                    | Day / Month / Year<br>Or Values<br>Year / Month / Day |                              | D/M/Y   | NO              |
| Display Orientation    | Ð                  | ← / ↑ /                                               | $l \rightarrow l \downarrow$ | 1       | NO              |
| Display Brightness     |                    | 20 / 40 / 60                                          | / 80 / 100%                  | 60%     | NO              |
| Sleep                  | <b>(</b>           | OFF                                                   | / ON                         | OFF     | NO              |
| Max Measurements Reset | MAX                | RES                                                   | SET                          | -       | YES             |
| Factory Default        |                    | RES                                                   | SET                          | -       | YES             |
| Data Right Permission  | a Right Permission |                                                       | OFF                          | ON      | YES             |
| Phase Sequence         |                    | 1, 2, 3                                               | / 1, 3, 2                    | 1, 2, 3 | YES             |





# Troubleshooting

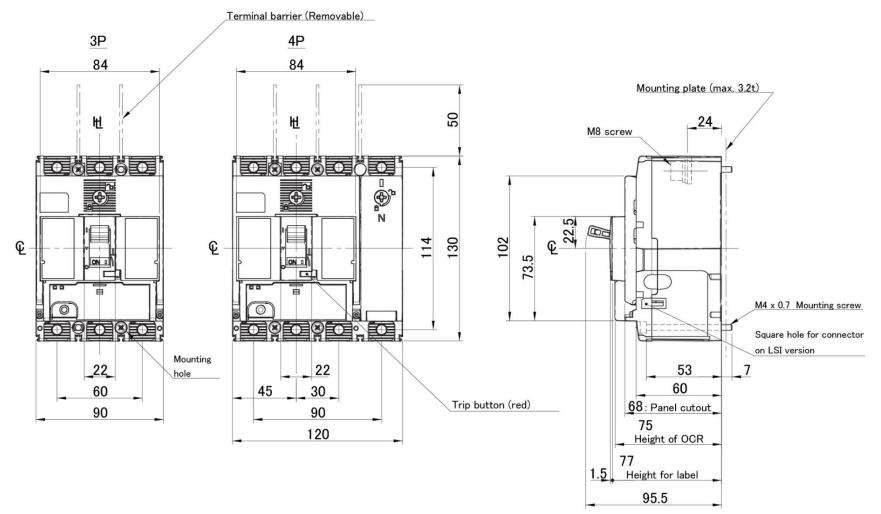
# Troubleshooting

In the event of a problem when using the TemBreak PRO system, this section provides advice on how to resolve issues.

|   | Problem description           | Possible cause                                       | Remedial advice                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Ready LED OFF                 | Insufficient or no power to the Trip<br>Unit         | Verify power supply requirements. Refer to Trip Unit Power Supply section.                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                               | Unit                                                 | If Trip Unit is self-powered:<br>- MCCB must be closed and load drawing sufficient current through main poles.<br>- Verify the current through the MCCB poles meets the minimum requirements.<br>If Trip Unit is externally powered:<br>- Verify external 24V dc power supply is operational at correct voltage.                                                                                                                                                          |
|   |                               | Incorrect or faulty wiring                           | Verify integrity of wiring and connections.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                               |                                                      | If Trip Unit is self-powered, verify and correct any:<br>- Loose connections to line and load terminals<br>- Incorrect terminals / conductors / connector pins                                                                                                                                                                                                                                                                                                            |
|   |                               |                                                      | If Trip Unit is externally powered, check for and correct any:<br>- Loose connection of CIP connector and cable<br>- Loose connection of CIP cable to external supply terminals<br>- Incorrect supply terminals / conductors / connector pins<br>Refer to External 24V dc supply instructions section.                                                                                                                                                                    |
|   |                               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 | Ready LED flashing orange     | Incorrect settings                                   | Verify adjustment dials are in correct defined positions                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                               | <b>T</b> 11 11 1 1 1                                 | For 3P MCCB, ensure that NP (Neutral Protection) is not enabled.                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                               | Trip Unit is faulty                                  | Replace MCCB                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3 | The embedded display is blank | Insufficient or no power to the Trip<br>Unit.        | <ul> <li>Verify power supply requirements. Refer to <u>Trip Unit Power Supply</u> section.</li> <li>If Trip Unit is self-powered: <ul> <li>MCCB must be closed and load drawing sufficient current through main poles.</li> <li>Verify the current through the MCCB poles meets the minimum requirements.</li> </ul> </li> <li>If Trip Unit is externally powered: <ul> <li>Verify external 24V dc power supply is operational at correct voltage.</li> </ul> </li> </ul> |
|   |                               | Incorrect or faulty wiring                           | Verify integrity of wiring and connections.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                               |                                                      | If Trip Unit is self-powered, verify and correct any:<br>- Loose connections to line and load terminals<br>- Incorrect terminals / conductors / connector pins<br>If Trip Unit is externally powered, check for and correct any:<br>- Loose connection of CIP connector and cable<br>- Loose connection of CIP cable to external supply terminals<br>- Incorrect supply terminals / conductors / connector pins<br>Refer to External 24V dc supply instructions section.  |
|   |                               | Display is not seated correctly<br>Display is faulty | <ul> <li>Verify display connections are not damaged or dirty:</li> <li>Un-clip embedded display from the Trip Unit.</li> <li>Verify connection pins and gold tabs on underside of display are clean and free of debris.</li> <li>Re-insert display and click into position firmly.</li> </ul>                                                                                                                                                                             |



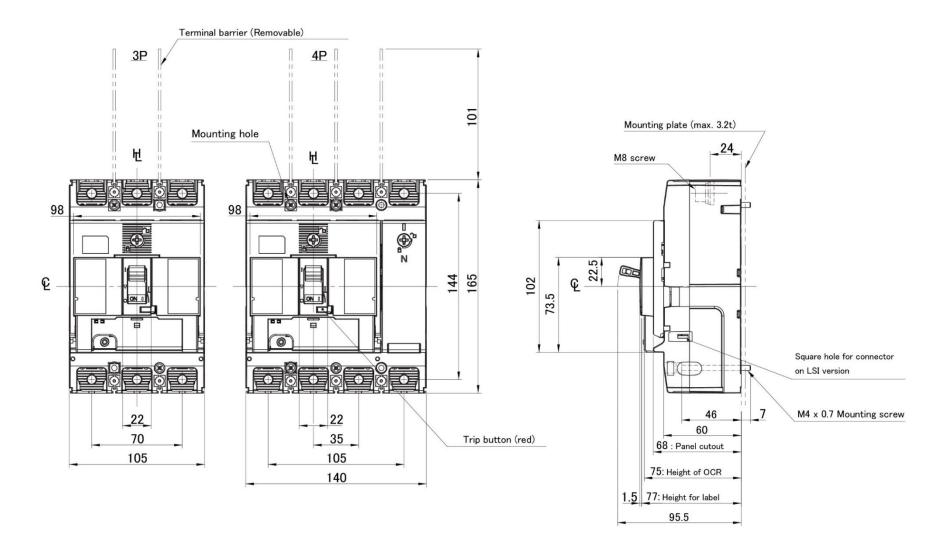



| 9         To linit over temperature aitem<br>(Internal TP, Unit Imperature ><br>105°C)         Excessive ambent imperature arge (25°C7°CC)         Net/Set 0 to the sceed the maximum rated<br>ambent imperature rateg (25°C7°CC)           05°C)         Loose terminal sceev or conduct<br>connecting screw.         Verify and correct any loose connections to lod and line terminals.<br>Refer to houp and connection requirements in TenBreak PRO P. SEt Installation<br>instructions applied with MCCB           5         Abnormal voltage on load side         Excessive ward of contact<br>context flags properties of high frequency<br>distribution in load current.         Replace MCCB           6         Failure in ON position         Rest or contacts         Replace MCCB.           7         Failure in ON position         Rest operation and contact resistance,<br>load and intert interforing with<br>contacts or contact surfaces         Replace MCCB.           7         Failure in ON position         Rest operation and contact<br>contact surfaces         Replace MCCB.           7         Failure in RESET position         UVT not energised         Apply voltage to IVT           7         Fault in transmitter interforing with<br>restart interpret interforing within rated current         Decrease distortion content of load circuit.           8         Nustance tripping while rated current.         Circuit theregised<br>Circuit theregised in touch<br>contenting in output and current.         Replace MCCB           8         Nustance tripping while rated current.         High req                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Problem description               | Possible cause                                         | Remedial advice                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refer to trops and connection requirements in TemBreak PRO P_SE Installation<br>Introduces supplied with MCGB         Refer to trops and connection requirements in TemBreak PRO P_SE Installation<br>Introduces supplied with MCGB           5         Abnormal voltage on load side         Excessive ward or contact<br>distortion in bad current.         Replace MCCB           6         Failure in ON position         Reset operation not inplif frequency<br>distortion in bad current.         Replace MCCB.           7         Failure in ON position         Reset operation not conducted<br>after tripping operation.         Perform reset operation.           7         Failure in RESET position         UVT not energised         Apply voltage to UVT           7         Failure in RESET position         UVT not energised         Apply voltage to UVT           7         Failure in RESET position         UVT not energised         Dampen vibration of MCCB and review installation requirements           8         Nuisance tripping while rated current         Vortion and/or shock         Dampen vibration of MCCB and review installation requirements           9         Nuisance tripping while rated current         Vortion match shoure         Review nearity sources of conducted and ratified emissions (eg radio sources,<br>interference from mashy<br>conductors or extend radio<br>source)         Excessive surge         Isolate and militigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting<br>current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4  | (Internal Trip Unit temperature > | Excessive ambient temperature.                         | Verify ambient temperature surrounding the MCCB do not exceed the maximum rated ambient temperature range (-25°C+70°C)                                 |
| Image: Section of the section of context failure in the section of the sectin the section of the secting of the secting of the sectio |    |                                   |                                                        | Refer to torque and connection requirements in TemBreak PRO P_SE Installation                                                                          |
| distorion in load current.         distorion in load current.           5         Abnormal voltage on load side         Excessive wear of contacts         Replace MCCB.           6         Failure in ON position         Reset operation not conducted<br>after tripping operation.         Perform reset operation.           7         Failure in RESET position         UVT not energised         Apply voltage to UVT           7         Failure in RESET position         UVT not energised         Apply voltage to UVT           7         Failure in RESET position         UVT not energised         Apply voltage to UVT           7         Failure in RESET position         UVT not energised         Apply voltage to UVT           8         Nuisence tripping while rated current<br>not mached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           8         Nuisence tripping while rated current<br>not mached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           9         Nuisence tripping due to starting<br>current         Excessive surge         Isolate and mitigate surge source (e.g. surge protection devices)           9         Nuisence tripping due to starting<br>current         Excessive including variable frequency drives)         Verify control wring and supply to SHT and UVT           9         Nuisence tripping due to starting<br>curent <td></td> <td></td> <td>loose internal connection or</td> <td>Replace MCCB</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                                   | loose internal connection or                           | Replace MCCB                                                                                                                                           |
| Foreign matter interforing with<br>contacts or contact surfaces         Perform reset operation.           6         Failure in ON position         Reset operation not conducted<br>after tripping operation.         Perform reset operation.           7         Failure in RESET position         U/T not energised         Apply voltage to U/T           0         Failure in RESET position         U/T not energised         Apply voltage to U/T           6         Fault of tripping mechanism         Replace MCCB         Control threawing newthing<br>cycles using SHT or U/YT           8         Nuisance tripping while rated current<br>not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           8         Nuisance tripping while rated current<br>not reached         High proportion of high frequency<br>distortion in load current.         Decrease distortion content of load circuit           10         Nuisance tripping due to starting<br>current         Excessive surge         Isolate and mitigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting<br>current         Switching operation of start delta<br>motor starter, incorrect wring         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting<br>current         Switching operation of start delta<br>motor starter, incorrect wring         Verify and correct any issues with star-delta starter wring with respect to the motor<br>wri                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                   |                                                        | Decrease distortion content of load circuit                                                                                                            |
| Image: second start surfaces         contacts or contact surfaces           6         Failure in ON position         Reset operation not conducted after tripping operation.         Perform reset operation.           7         Failure in RESET position         UVT not energised         Apply voltage to UVT           7         Failure in RESET position         UVT not energised         Replace MCCB           8         Nuisance tripping while rated current not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           8         Nuisance tripping while rated current not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           9         Nuisance tripping while rated current not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           9         Nuisance tripping due to starting current not reached         Electromagnetic induced issue and mitigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting         Excessive surge         Isolate and mitigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting         Excessive inrush starting current due to load type         Verify and correct any issues with star-delta starter wring with respect to the motor wrindings and phase sequence. Refer to motor and/or starter incorect wring with respect and verify motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  | Abnormal voltage on load side     | Excessive wear of contacts                             | Replace MCCB.                                                                                                                                          |
| after tripping operation.         after tripping operation.           7         Failure in RESET position         UVT not energised         Apply voltage to LVT           6         Circuit breaker service life ended due to large number of switching cycles using SHT or UVT         Replace MCCB           8         Nulsance tripping while rated current not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           8         Nulsance tripping while rated current interference (from nearby conductors or external radio sources)         Decrease distortion content of load circuit           9         Nulsance tripping due to starting current current interference (from nearby conductors or external radio sources)         Review nearby sources of conducted and radiated emissions (e.g. radio sources, high-speed switching devices including variable frequency drives)           9         Nulsance tripping due to starting current current in each load to control circuit for SHT or UVT         Verify control wring and supply to SHT and UVT           9         Nulsance tripping due to starting current in motor starter, incorrect wring with respect to the motor wrinding sand phase sequence. Refer to motor and/or starter manufacturer           9         Nulsance tripping due to starting current in motor (e.g., wrindings, starter circuit, in motor (e.g., wrindings, starter circuit, in motor (e.g., wrindings, starter circuit, starter, incorrect wring         Verify and correct any issues with star-dalta starter wring with respect to the motor wrinding manufacturer                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                   |                                                        |                                                                                                                                                        |
| Interaction         Interaction           Circuit breaker service life ended<br>due to large number of switching<br>cycles using SHT or UVT         Replace MCCB           Fault of tripping while rated current<br>not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           High proportion of high frequency<br>distortion in load current.         Vibration and/or shock         Dampen vibration content of load circuit           Electromagnetic induced<br>interference (from nearby<br>conductors or external radio<br>sources)         Review nearby sources of conducted and radiated emissions (e.g. radio sources,<br>high-speed switching devices including variable frequency drives)           Image: Statistic Statistis Statistis Statistic Statistic Statistis Statistic Statistic Stat                                                                                                                                                                          | 6  | Failure in ON position            |                                                        | Perform reset operation.                                                                                                                               |
| 8         Nuisance tripping while rated current<br>not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           8         Nuisance tripping while rated current<br>not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           8         Nuisance tripping while rated current<br>not reached         Vibration and/or shock         Decrease distortion content of load circuit           Electromagnetic induced<br>interference (from nearby<br>conductors or external radio<br>sources)         Decrease distortion content of load circuit           8         Nuisance tripping due to starting<br>current         Electromagnetic induced<br>interference (from nearby<br>conductors or external radio<br>sources)         Review nearby sources of conducted and radiated emissions (e.g. radio sources,<br>high-speed switching devices including variable frequency drives)           9         Nuisance tripping due to starting<br>current         Excessive surge         Isolate and mitigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting<br>current         Excessive insush starting current<br>due to load type         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting<br>current         Excessive incurse triping         Verify and correct any issues with star-delta starter wring with respect to the motor<br>windings, starter circuit)           9         Nuisance tripping due to startiff<br>motor starter, incorrect wring<                                                                                                                                                                                                                                                                                                                                                                             | 7  | Failure in RESET position         | UVT not energised                                      | Apply voltage to UVT                                                                                                                                   |
| 8         Nuisance tripping while rated current<br>not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           8         Nuisance tripping while rated current<br>not reached         Vibration and/or shock         Dampen vibration of MCCB and review installation requirements           9         Nuisance tripping due to starting<br>current         Electromagnetic induced<br>interference (from nearby<br>conductors or external radio<br>sources)         Review nearby sources of conducted and radiated emissions (e.g. radio sources,<br>high-speed switching devices including variable frequency drives)           9         Nuisance tripping due to starting<br>current         Excessive surge         Isolate and mitigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting<br>current         Excessive inrush starting current<br>due to load type         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting<br>current         Excessive inrush starting current<br>due to load type         Verify and correct any issues with star-delta starter wining with respect to the motor<br>windings and phase sequence. Refer to motor and/or starter manufacturer           9         Nuisance tripping due to starting<br>current         Excessive incush tarting current<br>due to load type         Verify and correct any issues with motor windor starter manufacturer           10         No trip at pickup current         Failure in selectivity/ccoordination<br>with upstream circuit breaker or<br>fuse <td< td=""><td></td><td></td><td>due to large number of switching</td><td>Replace MCCB</td></td<>                                                                                                                                                                                                                                                                  |    |                                   | due to large number of switching                       | Replace MCCB                                                                                                                                           |
| not reached         High proportion of high frequency<br>distortion in load current.         Decrease distortion content of load circuit           Electromagnetic induced<br>interference (from nearby<br>conductors or external radio<br>sources)         Review nearby sources of conducted and radiated emissions (e.g. radio sources,<br>high-speed switching devices including variable frequency drives)           9         Nuisance tripping due to starting<br>current         Excessive surge         Isolate and mitigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting<br>current         Excessive insush starting current<br>due to load type         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting<br>current         Excessive insush starting current<br>due to load type         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting<br>current         Excessive insush starting current<br>due to load type         Verify and correct any issues with star-delta starter wiring with respect to the motor<br>windings, starter circuit)           9         No trip at pickup current         Verify and correct any issues with motor wiring. Inspect and verify motor winding<br>insulation. Refer to motor manufacturer           10         No trip at pickup current         Failure in selectivity/coordination<br>with upstream circuit breaker or<br>fuse         Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                      |    |                                   | Fault of tripping mechanism                            |                                                                                                                                                        |
| 9         Nuisance tripping due to starting current         Excessive surge         Isolate and mitigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting current         Excessive inrush starting current due to load type         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting current         Excessive inrush starting current due to load type         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting current         Excessive inrush starting current due to load type         Review INST and STD protection settings for load type where applicable           10         No trip at pickup current         Failure in selectivitly/coordination with upstream circuit breaker or fuse         Review selectivitly/coordination study and protection parameters of each device           10         No trip at pickup current         Failure in selectivitly/coordination with upstreaker or fuse         Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8  |                                   | Vibration and/or shock                                 | Dampen vibration of MCCB and review installation requirements                                                                                          |
| 9         Nuisance tripping due to starting current current         Excessive surge         Isolate and mitigate surge source (e.g. surge protection devices)           9         Nuisance tripping due to starting current current         Excessive inrush starting current         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting current current         Excessive inrush starting current due to load type         Review INST and STD protection settings for load type where applicable           9         Nuisance tripping due to starting current fue to load type         Excessive inrush starting current fue to load type         Verify and correct any issues with star-delta starter wiring with respect to the motor windings and phase sequence. Refer to motor and/or starter manufacturer           9         No trip at pickup current         Failure in selectivity/coordination for Star-delta to motor manufacturer           10         No trip at pickup current         Failure in selectivity/coordination with upstream circuit breaker or fuse         Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                   |                                                        | Decrease distortion content of load circuit                                                                                                            |
| 9       Nuisance tripping due to starting current due to load type       Excessive inrush starting current due to load type       Review INST and STD protection settings for load type where applicable         9       Nuisance tripping due to starting       Excessive inrush starting current due to load type       Review INST and STD protection settings for load type where applicable         9       Nuisance tripping due to starting       Excessive inrush starting current due to load type       Review INST and STD protection settings for load type where applicable         9       Switching operation of star-delta motor starter, incorrect wiring       Verify and correct any issues with star-delta starter wiring with respect to the motor windings and phase sequence. Refer to motor and/or starter manufacturer         10       No trip at pickup current       Failure in selectivity/coordination with upstream circuit breaker or fuse       Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                   | interference (from nearby conductors or external radio |                                                                                                                                                        |
| 9       Nuisance tripping due to starting current due to load type       Excessive inrush starting current due to load type       Review INST and STD protection settings for load type where applicable         9       Nuisance tripping due to starting current current       Excessive inrush starting current due to load type       Review INST and STD protection settings for load type where applicable         9       Switching operation of star-delta motor starter, incorrect wiring       Verify and correct any issues with star-delta starter wiring with respect to the motor windings and phase sequence. Refer to motor and/or starter manufacturer         Short-circuit in motor (e.g. windings, starter circuit)       Verify and correct any issues with motor wiring. Inspect and verify motor winding insulation. Refer to motor manufacturer         10       No trip at pickup current       Failure in selectivity/coordination with upstream circuit breaker or fuse       Review selectivity/coordination study and protection parameters of each device         Incorrect protection settings       Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                   | Excessive surge                                        | Isolate and mitigate surge source (e.g. surge protection devices)                                                                                      |
| current       due to load type         Switching operation of star-delta<br>motor starter, incorrect wiring       Verify and correct any issues with star-delta starter wiring with respect to the motor<br>windings and phase sequence. Refer to motor and/or starter manufacturer         Short-circuit in motor (e.g.<br>windings, starter circuit)       Verify and correct any issues with motor wiring. Inspect and verify motor winding<br>insulation. Refer to motor manufacturer         Incorrect protection of control<br>circuit for SHT or UVT       Verify control wiring and supply to SHT and UVT         Incorrect protection settings       Review selectivity/coordination study and protection parameters of each device         Incorrect protection settings       Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                   |                                                        | Verify control wiring and supply to SHT and UVT                                                                                                        |
| 10       No trip at pickup current       Failure in selectivity/coordination with upstream circuit breaker or fuse       Review selectivity/coordination study and protection parameters of each device         10       No trip at pickup current       Failure in selectivity/coordination with upstream circuit breaker or fuse       Review selectivity/coordination study and protection parameters of each device         10       No trip at pickup current       Failure in selectivity/coordination with upstream circuit breaker or fuse       Review selectivity/coordination study and protection parameters of each device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9  |                                   |                                                        | Review INST and STD protection settings for load type where applicable                                                                                 |
| windings, starter circuit)       insulation. Refer to motor manufacturer         Erroneous connection of control<br>circuit for SHT or UVT       Verify control wiring and supply to SHT and UVT         10       No trip at pickup current       Failure in selectivity/coordination<br>with upstream circuit breaker or<br>fuse       Review selectivity/coordination study and protection parameters of each device         Incorrect protection settings       Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                   |                                                        |                                                                                                                                                        |
| 10       No trip at pickup current       Failure in selectivity/coordination with upstream circuit breaker or fuse       Review selectivity/coordination study and protection parameters of each device         Incorrect protection settings       Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                   |                                                        |                                                                                                                                                        |
| with upstream circuit breaker or fuse         Incorrect protection settings         Review enabled protection settings ensuring correct pickup current and time-delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                   |                                                        | Verify control wiring and supply to SHT and UVT                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 | No trip at pickup current         | with upstream circuit breaker or                       | Review selectivity/coordination study and protection parameters of each device                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                   | Incorrect protection settings                          | Review enabled protection settings ensuring correct pickup current and time-delay for load type. (e.g. LTD, STD, INST pickup currents and time delays) |



# Annex A – Dimensions

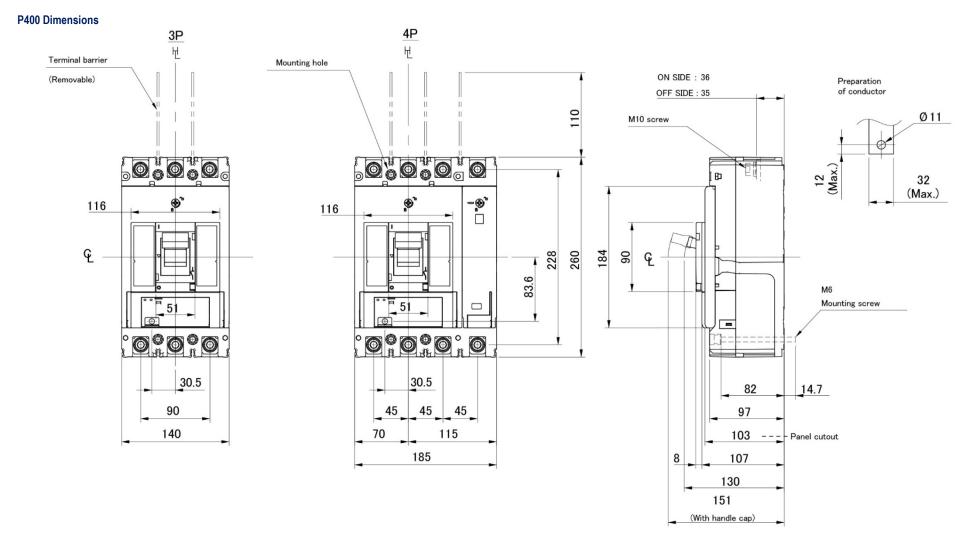



#### P160 Dimensions





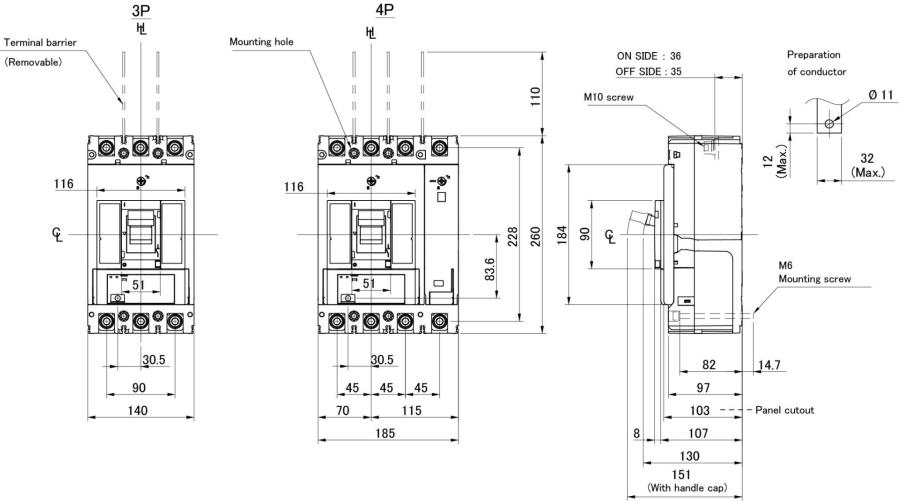



#### P250 Dimensions





### Annex A – Dimensions



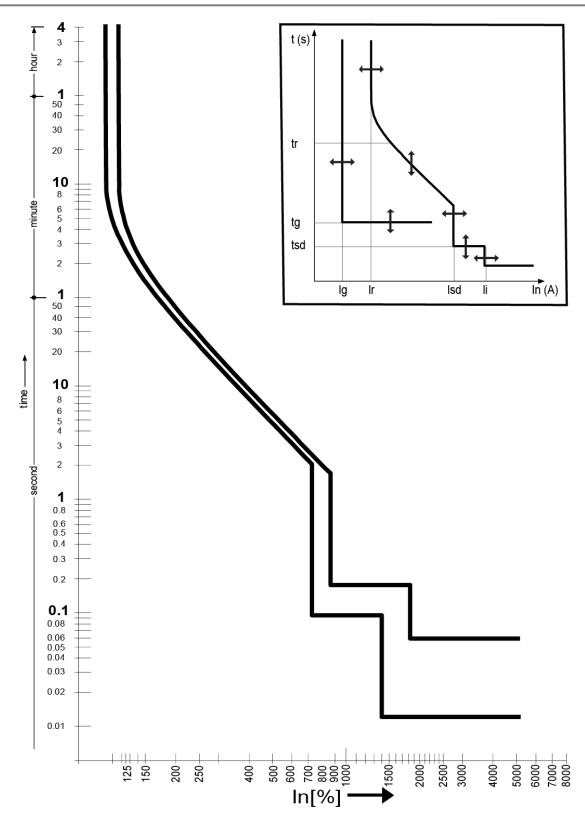





### Annex A – Dimensions

#### P630 Dimensions

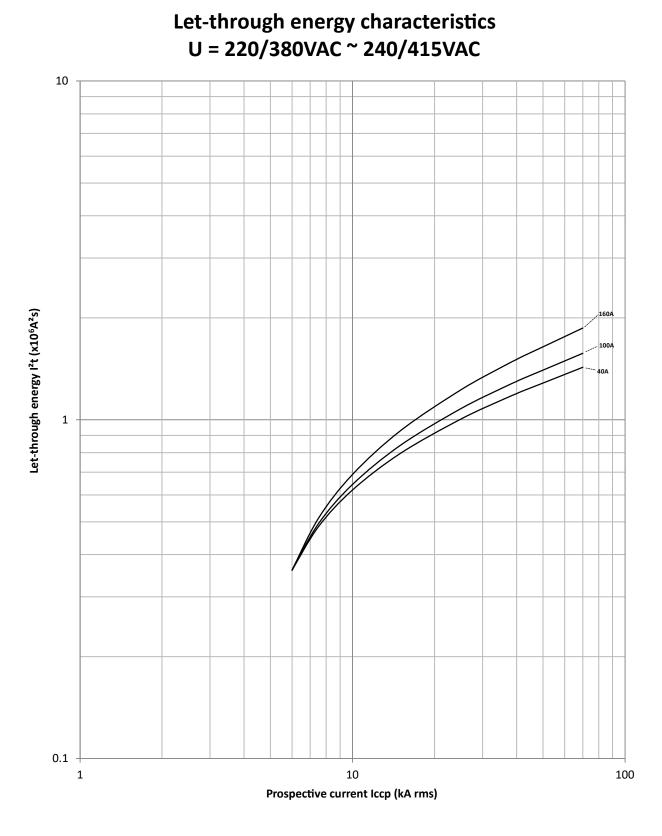



NHP



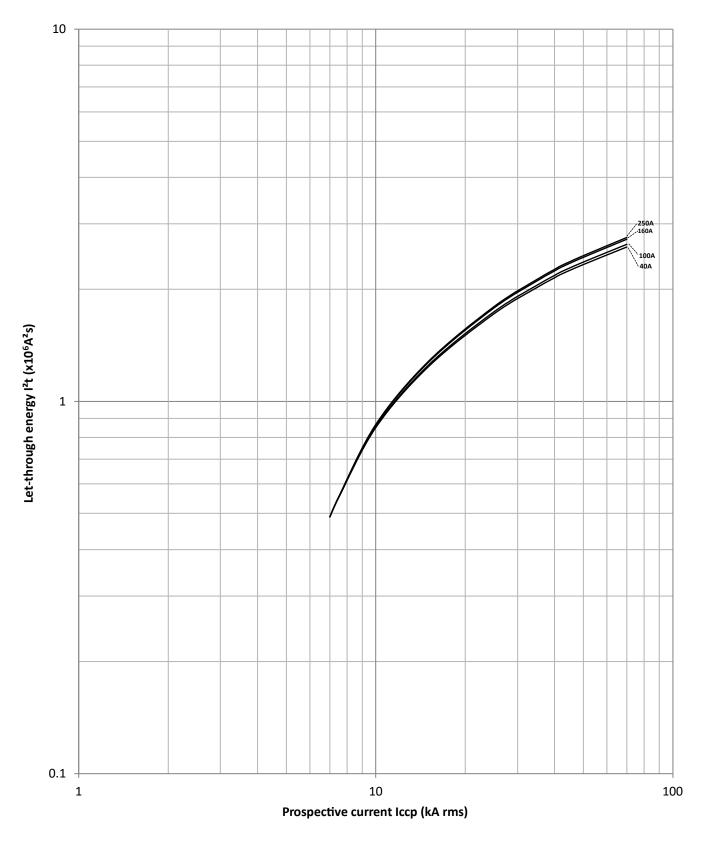
### Annex B – Trip Curves

í


**Notice**: The below trip curve is representative only. The P\_SE Trip Unit features fully configurable protection settings with fine adjustment to pick-up current and time delay for the various respective trip curves, which can change depending on the application. To aide in selectivity studies, a trip curve based on the actual settings used can be generated using the software package TemCurve. Contact NHP for details on TemCurve and Selectivity.





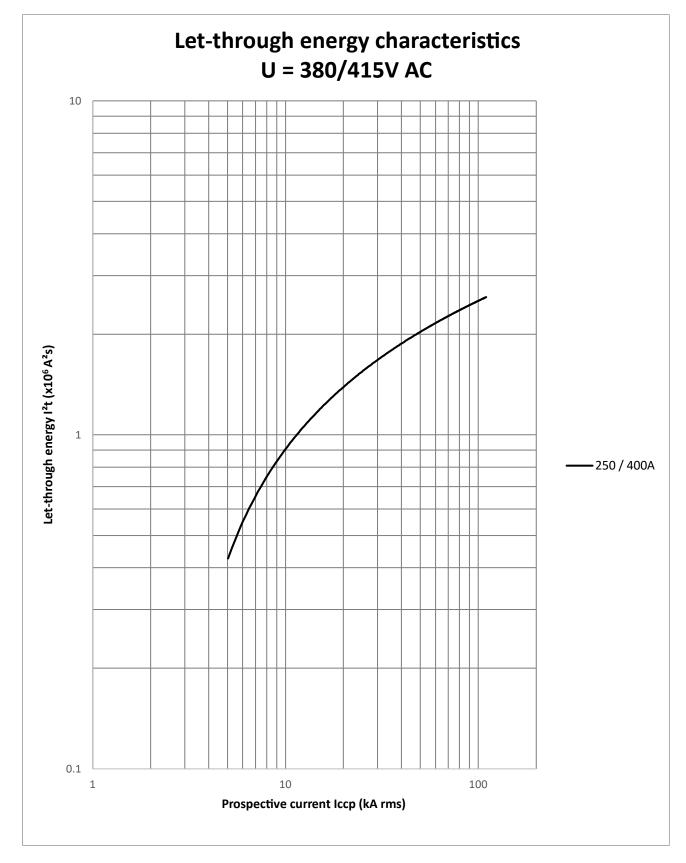



P160\_SE



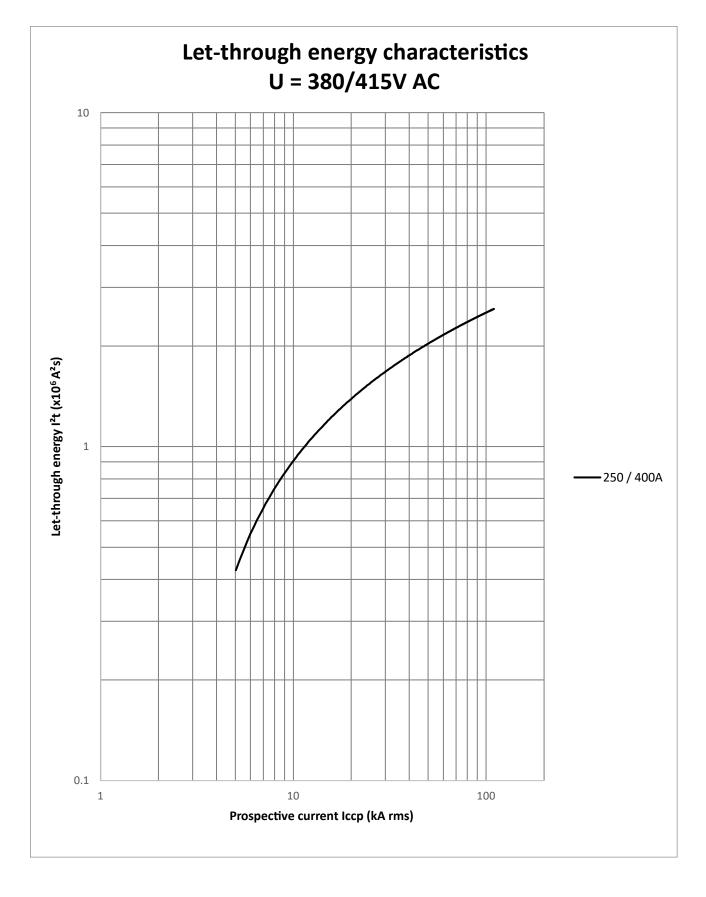


### P250\_SE









NHP

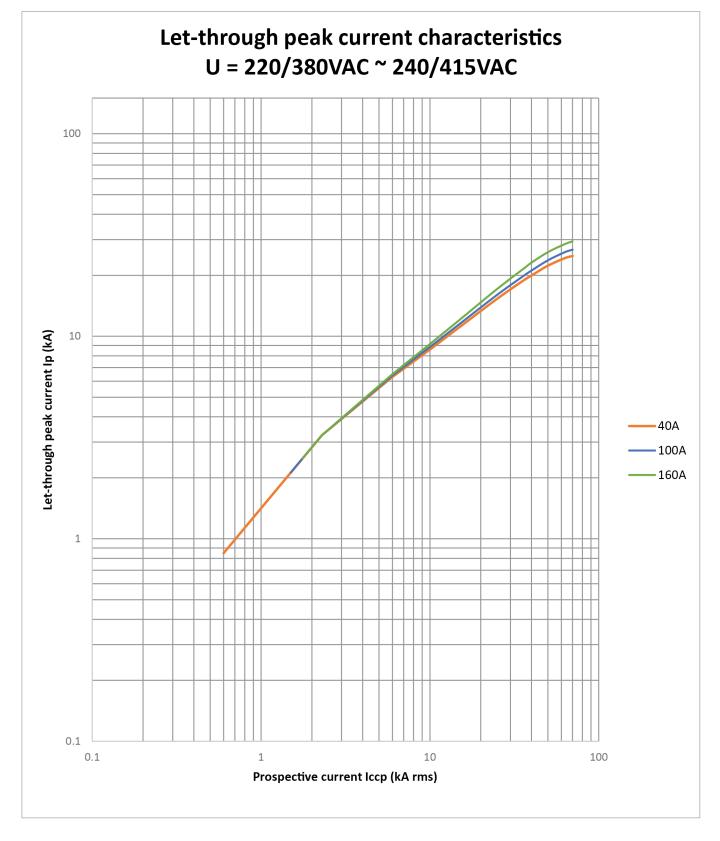
#### P400\_SE





### P630\_SE

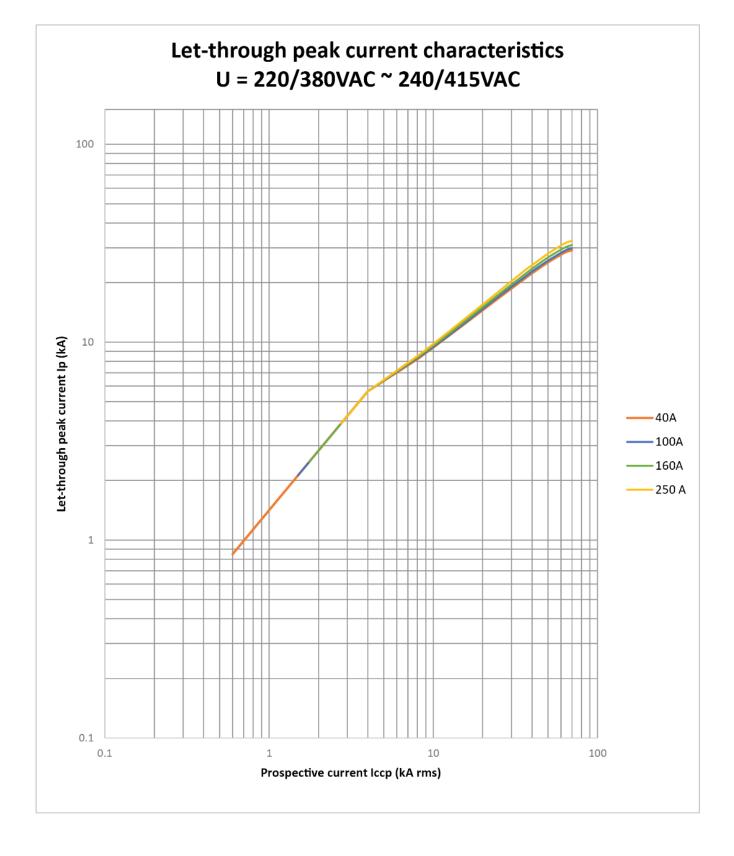







Exclusive Partner

### Annex D – Peak Let Through Curves

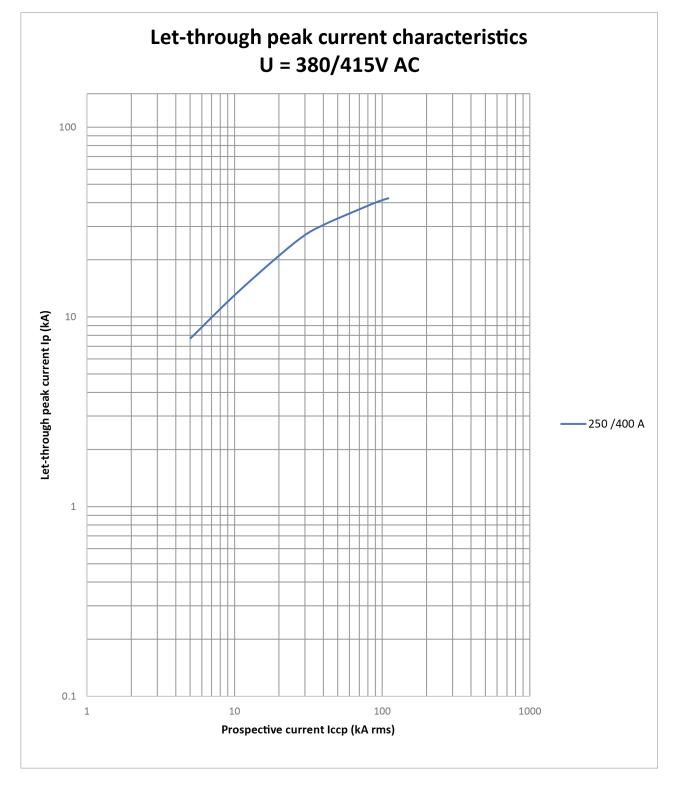







### Annex D – Peak Let Through Curves

### P250\_SE

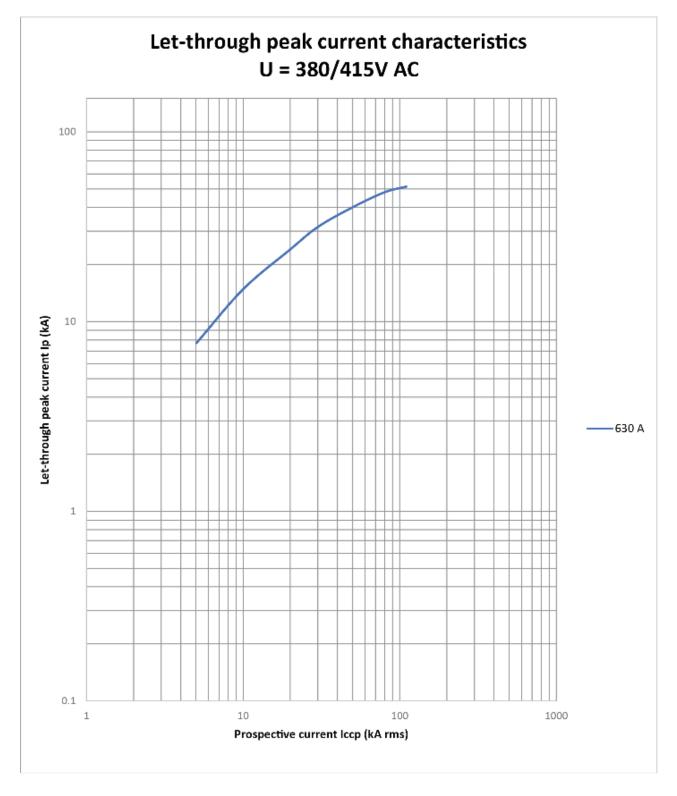





### Annex D – Peak Let Through Curves










Exclusive Partner

### Annex D – Peak Let Through Curves

### P630\_SE







### Annex E – Watts Loss

### Impedance Watts Loss

| Frame   | Rating<br>In (A) | Impedance per pole $(m\Omega)$ | Watts Loss per pole<br>Based from Impedance (W) | Pole<br>numbers | Watts Loss per product<br>Based from Impedance (W) |
|---------|------------------|--------------------------------|-------------------------------------------------|-----------------|----------------------------------------------------|
|         | 40               | 0.35                           | 0.6                                             |                 | 1.8                                                |
| P160_SE | 100              | 0.35                           | 3.5                                             | 3/4P            | 10.5                                               |
|         | 160              | 0.35                           | 9.0                                             |                 | 27                                                 |
|         | 40               | 0.24                           | 0.4                                             |                 | 1.2                                                |
|         | 100              | 0.24                           | 2.4                                             | 3/4P            | 7.2                                                |
| P250_SE | 160              | 0.24                           | 6.1                                             | 3/4P            | 18.3                                               |
|         | 250              | 0.24                           | 15.0                                            |                 | 45                                                 |
| P400 SE | 250              | 0.18                           | 11.1                                            | 3/4P            | 33.3                                               |
| F400_3E | 400              | 0.18                           | 28.4                                            | J/4F            | 85.2                                               |
| P630_SE | 630              | 0.13                           | 52.0                                            | 3/4P            | 156                                                |

#### **Resistance Watts Loss**

| Frame   | Rating<br>In (A) | Resistance per pole<br>(mΩ) | Watts Loss per pole<br>Based from Resistance (W) | Pole<br>numbers | Watts Loss per product<br>Based from Resistance (W) |
|---------|------------------|-----------------------------|--------------------------------------------------|-----------------|-----------------------------------------------------|
|         | 40               | 0.144                       | 0.23                                             |                 | 0.69                                                |
| P160_SE | 100              | 0.144                       | 1.44                                             | 3/4P            | 4.32                                                |
|         | 160              | 0.144                       | 3.69                                             |                 | 11.07                                               |
|         | 40               | 0.127                       | 0.2032                                           |                 | 0.6096                                              |
| P250_SE | 100              | 0.127                       | 1.27                                             | 3/4P            | 3.81                                                |
| F200_3E | 160              | 0.127                       | 3.2512                                           | 3/4F            | 9.7536                                              |
|         | 250              | 0.127                       | 7.9375                                           |                 | 23.8125                                             |
| P400 SE | 250              | 0.128                       | 8.0                                              | 3/4P            | 24                                                  |
| F400_3E | 400              | 0.128                       | 20.5                                             | 3/4P            | 61.5                                                |
| P630_SE | 630              | 0.064                       | 25.4                                             | 3/4P            | 76.2                                                |





# Annex F – Rated Temperature Tables

Maximum setting of the Ir at the nominated current at the specified ambient. Values in bold are the maximum value for  $I_r$ , different combinations of  $I_{r1}$  and  $I_{r2}$  can be set if the combined settings are not greater than the  $I_r$  value advised.

#### P160 Electronic

| МССВ | Connection                  | Trip Unit | Trip           |         | Rated Current (A) |      |      |      |      |      |      |
|------|-----------------------------|-----------|----------------|---------|-------------------|------|------|------|------|------|------|
| Туре | Туре                        | Туре      | Unit<br>Rating | Setting | 40ºC              | 45⁰C | 50ºC | 55⁰C | 60ºC | 65⁰C | 70⁰C |
|      | Front Conn.                 |           | 40A            |         | 40                | 40   | 40   | 40   | 40   | 40   | 40   |
| DICO | Rear Conn.<br>Plug-in Conn. | SE        | 100A           | Ir (A)  | 100               | 100  | 100  | 100  | 100  | 100  | 100  |
| P160 | Front Conn.<br>Rear Conn.   |           | 160A           |         | 160               | 160  | 160  | 160  | 160  | 156  | 145  |
|      | Plug-in Conn.               |           |                |         | 125               | 125  | 125  | 125  | 125  | 120  | 112  |

#### P250 Electronic

| МССВ | Connection<br>Type        | Trip Unit | Trip           |         |      |      | Rat  | ed Curre | nt (A) |      |      |
|------|---------------------------|-----------|----------------|---------|------|------|------|----------|--------|------|------|
| Туре |                           | Туре      | Unit<br>Rating | Setting | 40ºC | 45ºC | 50ºC | 55⁰C     | 60ºC   | 65ºC | 70ºC |
|      | Front Conn.<br>Rear Conn. |           | 40A            |         | 40   | 40   | 40   | 40       | 40     | 40   | 40   |
|      | Plug-in Conn.             | SE        | 100A           | Ir (A)  | 100  | 100  | 100  | 100      | 100    | 100  | 100  |
| DOEO | Front Conn.<br>Rear Conn. |           | 160A           |         | 160  | 160  | 160  | 160      | 160    | 160  | 155  |
| P250 | Plug-in Conn.             |           |                |         | 160  | 160  | 160  | 160      | 160    | 160  | 149  |
|      | Front Conn.<br>Rear Conn. |           | 250A           |         | 250  | 250  | 250  | 250      | 242    | 225  | 209  |
|      | Plug-in Conn.             |           |                |         | 250  | 250  | 250  | 243      | 228    | 214  | 198  |

#### P400 Electronic

| МССВ | Connection<br>Type                         | Trip Unit<br>Type | Trip<br>Unit<br>Rating |         |      | Rated Current (A) |      |      |      |      |      |  |
|------|--------------------------------------------|-------------------|------------------------|---------|------|-------------------|------|------|------|------|------|--|
| Туре |                                            |                   |                        | Setting | 40ºC | 45⁰C              | 50ºC | 55⁰C | 60ºC | 65⁰C | 70⁰C |  |
| P400 | Front Conn.<br>Rear Conn.<br>Plug-in Conn. | SE                | 250A                   | Ir (A)  | 250  | 250               | 250  | 250  | 250  | 250  | 250  |  |
| P400 |                                            |                   | 400A                   | Ir (A)  | 400  | 400               | 400  | 400  | 400  | 360  | 312  |  |

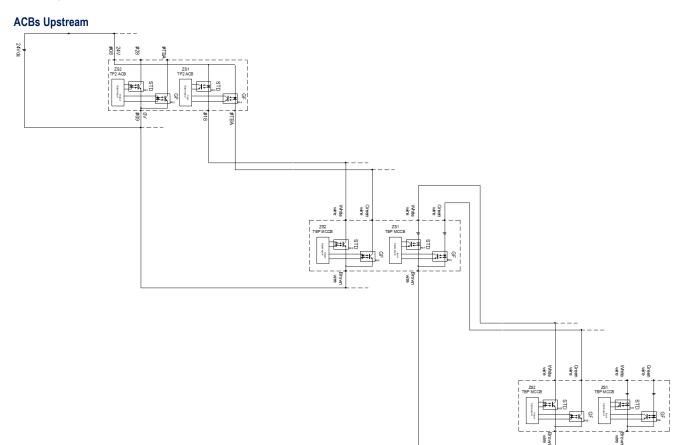
#### P630 Electronic

| МССВ | Connection<br>Type        | Trip Unit<br>Type | Trip<br>Unit<br>Rating | Setting | Rated Current (A) |      |      |      |      |      |      |      |      |
|------|---------------------------|-------------------|------------------------|---------|-------------------|------|------|------|------|------|------|------|------|
| Туре |                           |                   |                        |         | 30ºC              | 35⁰C | 40ºC | 45⁰C | 50ºC | 55⁰C | 60ºC | 65⁰C | 70ºC |
| P630 | Front Conn.<br>Rear Conn. | сг                | 630A                   | Ir (A)  | 630               | 630  | 630  | 630  | 630  | 615  | 560  | 497  | 434  |
| F030 | Plug-in Conn.             | SE                |                        | Ir (A)  | 570               | 570  | 570  | 570  | 546  | 500  | 455  | 400  | 372  |

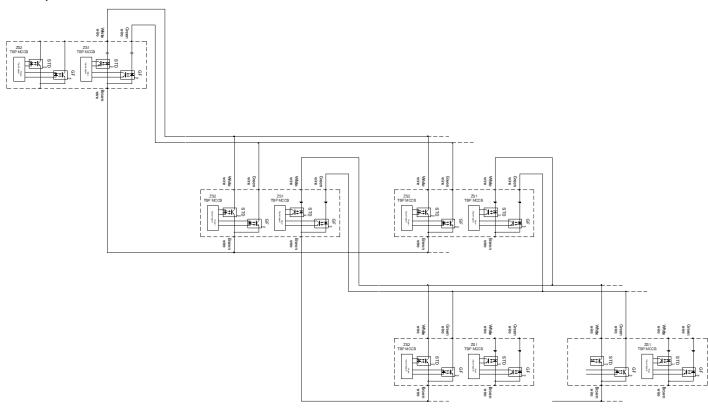


# Annex G – Wiring Diagrams & Terminal Designations

#### Internal Accessories


| Accessory | Terminal Designations |                                                | Notes                                          |                                                |
|-----------|-----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
|           | 12/AXb1 14/AXa1       | MCCB Status "Closed"                           | MCCB Status "Open"                             | MCCB Status "TRIP"                             |
| Auxiliary | 11/AXc1               | 11/AXc-14/AXa "Closed"<br>11/AXc-12/AXb "Open" | 11/AXc-14/AXa "Open"<br>11/AXc-12/AXb "Closed" | 11/AXc-14/AXa "Open"<br>11/AXc-12/AXb "Closed" |
|           | 92/ALb1 94/ALa1       | MCCB Status "Closed"                           | MCCB Status "Open"                             | MCCB Status "TRIP"                             |
| Alarm     | 91/ALc1               | 91/ALc-94/ALa "Open"<br>91/ALc-92/ALb "Closed" | 91/ALc-94/ALa "Open"<br>91/ALc-92/ALb "Closed" | 91/ALc-94/ALa "Closed"<br>91/ALc-92/ALb "Open" |
| Shunt     | C1C2                  | Shunt trips are continuous rat                 | ed and do not make use of an a                 | nti-burn out switch.                           |
| UVT (AC)  | U1 U2                 |                                                |                                                |                                                |
| UVT (DC)  | D1 D2                 |                                                |                                                |                                                |

NHP




## Annex G – Wiring Diagrams & Terminal Designations

### **ZSI** Wiring



#### **MCCBs Upstream**



NI

-



P\_SE-UM-001-EN

Version 1.7.0 Published 19th September 2022

AU 1300 NHP NHP NZ 0800 NHP NHP

NHP Electrical Engineering Products